Analysis of Acrylamide in Processed Foods Obtained from Korean Markets

  • Kim Cheong Tae (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, College of Agriculture and Life Sciences, Seoul National University, Research and Development Center, Nongshim) ;
  • Hwang Eun-Sun (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee Hyong Joo (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, College of Agriculture and Life Sciences, Seoul National University)
  • Published : 2005.12.01

Abstract

The purpose of this study was to determine the level of acrylamide in various processed foods, some of which were chosen because they were known to contain an excessive amount of acrylamide. A total of 190 food products based on steamed rice, cereals, and potato chips were purchased from retail markets and analyzed with the LC-MS/MS method. Acrylamide was found to be widely distributed in all of the foods. The fried Potato chips contained the highest levels of acrylamide, at $470-3,572{\mu}g/kg$; these were lowered to $38-633{\mu}g/kg$ by vacuum frying. The median concentration of acrylamide was higher in snacks containing potato ($448{\mu}g/kg$) than in those with no potato ($133{\mu}g/kg$). The concentrations of acrylamide were 2-96 $\mu$g/kg in Korean staple foods, $48-61{\mu}g/kg$ in bone-extract soups, and $0-57{\mu}g/kg$ in Bulgogi sauce. These results suggest that the components of processed ffods and the processing methods are important determinants of acrylamide formation.

본 연구는 우리나라 사람이 일상적으글 섭취하는 식품 중에서 아크릴아마이드 잔류량을 조사하여 위해도 평가를 위한 자료로 제공함은 물론 아크릴아마이드가 가장 많이 검출되는 가공식품에서 아크릴아마이드를 기술적으로 저감화 시킬 수 있는 방법을 연구하기 위한 기초 데이터로 활용하고자 수행하였다. 밥, 곡류 가공품, 포테이토칩 등을 포함한 190 가지 시판제품에 잔류하는 아크릴아마이드 함량을 LC-MS/MS 분석법으로 측정하였다. 아크릴아마이드는 여러 가지 가공식품에서 매우 다양한 수준으로 검출되었고 감자칩에서 $470\∼3,572{\mu}g/kg$로 가장 많이 검출되었다. 일반적으로 스낵류에서는 감자를 함유한 제품이 감자를 함유하지 않은 제품보다 상대적으로 높게 검출되었으며, 이때 각각의 중간값은 448과 $133{\mu}g/kg$었다. 한국 사람들이 주식으로 섭취하는 밥에서는 불검출$\∼96{\mu}g/kg$까지 검출되었다. 끊이는 식품 중의 하나인 곰탕에서도 $48\∼61{\mu}g/kg$가 검출되었고, 불고기 양념에서는 불검출$\∼57{\mu}g/kg$까지 검출되었다.

Keywords

References

  1. Konings, E.J.M., Baars, A.J., van Klaveren, J.D., Spanjier, M.C., Rensen, P.M., Hiemstra, M., van Kooij, J.A. and Peters, P.W.J.: Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food Chem. Toxicol. 41, 1569-1579 (2003) https://doi.org/10.1016/S0278-6915(03)00187-X
  2. Ono, H., Chuda, Y., Ohnishi-Kameyama, M., Yada, H., Ishizaka, M., Kobayashi, H. and Yoshida, M.: Analysis of acrylamide by LC-MS/MS and GC-MS in processed Japanese foods. Food Additiv. Contamin. 20, 215-220 (2003) https://doi.org/10.1080/0265203021000060887
  3. Takatsuki, S., Nemoto, S., Sasaki, K. and Maitani, T.: Determination of acrylamide in processed foods by LC/ MS using column switching. Shokuhin Eiseigaku Zasshi 44, 89-95 (2003) https://doi.org/10.3358/shokueishi.44.89
  4. Rosen, J. and Hellenas, K.E.: Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst 127, 880-882 (2002) https://doi.org/10.1039/b204938d
  5. SNFA. Information about acrylamide in food Uppsala, Sweden. Swedish National Food Administration, April. Available from: http://192.71.90.8/engakrylanalysresultat. htm (2002)
  6. Nemoto, S., Takatsuki, S., Sasaki, K. and Maitani, T.: Determination of acrylamide in foods by GC/MS using $^{13}C$-labeled acrylamide as an internal standard. Shokuhin Eiseigaku Zasshi 43, 371-376 (2002) https://doi.org/10.3358/shokueishi.43.371
  7. Ahn, J.S., Caste, L., Clarke, D.B., Lloyd, A.S., Philo, M.R. and Speck, D.R.: Verification of the findings of acrylamide in heated foods. Food Additiv. Contamin. 19, 1116-1124 (2002) https://doi.org/10.1080/0265203021000048214
  8. Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. and Tornqvist, M.: Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem. 50, 4998-5006 (2002) https://doi.org/10.1021/jf020302f
  9. IARC. Monographs on the valuation of carcinogen risk to humans: some industrial chemicals. No 60. Lyon, Inter-national Agency on Research on Cancer (1994)
  10. Tsuda, H.C., Shimizu, C.S., Taketomi, M.K., Hasegawa, M.M., Hamada, A., Kawata, K.M. and Inui, N.: Acrylamide; induction of DNA damage, chromosomal aberrations and cell transformation without gene mutations. Mutagenesis 8, 23-29 (1993) https://doi.org/10.1093/mutage/8.1.23
  11. Kim, C.T., Hwang, E. and Lee, H.J.: Reducing Acry-lamide in Fried Snack Products by Adding Amino Acids. J. Food Sci. 70, 354-358 (2005) https://doi.org/10.1111/j.1365-2621.2005.tb09966.x
  12. Stewart, G., Gosselin, C. and Pandian, S.: Selected ion monitoring of tert-butyldimethylsilyl cholesterol ethers for determination of total cholesterol content in foods. Food Chem. 44, 377-380 (1992) https://doi.org/10.1016/0308-8146(92)90271-3
  13. Martin, F.L. and Ames, J.M.: Formation of Strecker alde-hydes and pyrazines in a fried potato model system. J. Agric. Food Chem. 49, 3885-3892 (2001) https://doi.org/10.1021/jf010310g
  14. Mottram, D.S., Wedzicha, B.L. and Dodson, A.T.: Acry-lamide is formed in the Maillard reaction. Nature 419, 448-449 (2002) https://doi.org/10.1038/419448a
  15. Stadler, R.H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P.A., Robert, M.C. and Riediker, S.: Acrylamide from Maillard reaction products. Nature 419, 449–450 (2002)
  16. Oruna-Cocha, M.J., Duckham, S.C. and Ames, J.M.: Comparison of volatile compounds isolated from the skin and flesh of four potato cultivars after baking. J. Agric. Food Chem. 49, 2414-2421 (2001) https://doi.org/10.1021/jf0012345
  17. Rosen, J.D.: Acrylamide in food: is it a real threat to pub-lic health? American Council on Science and Health. Available from: http://www.acsh.org (2002)
  18. Park, J.Y.: Acrylamide monitoring of domestic heattreated food products. [dissertation]. Ewha Womans University, Seoul, Korea (2002)
  19. Yasuhara, A., Tanaka, Y., Hengel, M. and Shibamoto, T.: Gas chromatographic investigation of acrylamide formation in browning model systems. J. Agric. Food Chem. 51, 3999-4003 (2003) https://doi.org/10.1021/jf0300947
  20. Alpaslan, M., Boydak, E., Hayta, M., Gercek, S. and Simsek, M.: Effect of row space and irrigation on seed composition of Turkish sesame (Sesamum indicum L.). J. Am. Oil Chem. Soc. 78, 933-935 (2001) https://doi.org/10.1007/s11746-001-0366-0