CFUBMS을 이용한 ZrCrAIN 나노복합 박막의 구조와 기계적 특성

Structure and Mechanical Characteristics of ZrCrAIN Nanocomposite Thin Films by CFUBMS

  • 김연준 (성균관대학교 신소재공학과, 플라즈마 응용 표면기술 연구센터) ;
  • 이호영 (성균관대학교 신소재공학과, 플라즈마 응용 표면기술 연구센터) ;
  • 신경식 (성균관대학교 신소재공학과, 플라즈마 응용 표면기술 연구센터) ;
  • 정우성 (성균관대학교 신소재공학과, 플라즈마 응용 표면기술 연구센터) ;
  • 한전건 (성균관대학교 신소재공학과, 플라즈마 응용 표면기술 연구센터)
  • Kim Youn J. (Department of Advanced Materials Engineering, Sungkyunkwan University, Korea Center for Advanced Plasma Surface Technology) ;
  • Lee Ho Y. (Department of Advanced Materials Engineering, Sungkyunkwan University, Korea Center for Advanced Plasma Surface Technology) ;
  • Shin Kyung S. (Department of Advanced Materials Engineering, Sungkyunkwan University, Korea Center for Advanced Plasma Surface Technology) ;
  • Jung Woo S. (Department of Advanced Materials Engineering, Sungkyunkwan University, Korea Center for Advanced Plasma Surface Technology) ;
  • Han Jeon G. (Department of Advanced Materials Engineering, Sungkyunkwan University, Korea Center for Advanced Plasma Surface Technology)
  • 발행 : 2005.10.01

초록

The quaternary ZrCrAIN nanocomposite thin films are synthesized by Closed-Field Unbalanced Magnetron Sputtering (CFUBMS). Microstructure and mechanical properties of ZrCrAIN nanocomposite thin films are studied. Grain refinement of ZrCrAIN nanocomposite thin film is occurred by controlling $N_{2}$ partial pressure. Maximum hardness value according to the various $N_{2}$ partial pressures is obtained at 45 GPa. It is also conformed that critical value of the grain size (d) needs to achieve the maximum hardness.

키워드

참고문헌

  1. S. Veprek, J. Vac. Sci Technol., A17(5) (1999) 2401
  2. J. Mulsil, Surf. Coat. Technol., 125 (2000) 322 https://doi.org/10.1016/S0257-8972(99)00586-1
  3. J. Mulsil, H. Rub, Thin Solid Films, 365 (2000) 104 https://doi.org/10.1016/S0040-6090(00)00653-2
  4. D. M. Gruen, MRS. Bull., 23 (1998) 32
  5. T. Cscelle, A. Barimani, Surf. Coat. Technol., 76-77 (1995) 712
  6. H. Ehrhardt, Surf. Coat. Technol., 74/75 (1995)
  7. C. E. Krill et al. in 'Handbook of Nanostructured Materials and Nanoscience', 2 (2000) 155
  8. J. Musil, Surf. & Coat. Technol., 125 (2000) 322 https://doi.org/10.1016/S0257-8972(99)00586-1
  9. A. Leyland, Wear 246 (2000) 1 https://doi.org/10.1016/S0043-1648(00)00488-9
  10. S. Veprek et al., Surf. & Coat. Technol., 108-109 (1998) 138 https://doi.org/10.1016/S0257-8972(98)00618-5
  11. A. Mattew, The Value of Deposiion Processes for Industrial Tools, Proceedings of the 1st Conference on materials Engineering, Institution of Metallurgists, (1984) 175
  12. J. Musil, Surf. & Coat. Technol., 154 (2002) 304 https://doi.org/10.1016/S0257-8972(01)01714-5
  13. G. M. Pharr, Mater. Sci. Eng. A253 (1-2) (1998) 151
  14. H. K. Tnshoff, Int. J. Mach. Tools Manufact, 38(5-6) 469
  15. H. K. Tnshoff, Surf. & Coat. Technol., 93 (1997) 88 https://doi.org/10.1016/S0257-8972(97)00027-3
  16. E. Lugscheider, Surf. & Coat. Technol., 112 (1999) 146 https://doi.org/10.1016/S0257-8972(98)00775-0
  17. H. Ehrhardt, Surf. & Coat. Technol., 74-75 (1995) 29 https://doi.org/10.1016/0257-8972(95)08212-3
  18. P. Rogl, J. C. Schuster, Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems, ASM international, Metals Park, OH (1992)
  19. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., Wiley, New York, (1989)