802.11a/b/g WLAN용 이중대역 혼합기 설계에 관한 연구

A Study on the Design of Dual-Band Mixer for WLAN 802.11a/b/g Applications

  • Park Wook-Ki (Department of Electronic Engineering, InHa University) ;
  • Go Min-Ho (Department of Electronic Engineering, InHa University) ;
  • Kang Suk-Youb (Department of Electronic Engineering, InHa University) ;
  • Park Hyo-Dal (Department of Electronic Engineering, InHa University)
  • 발행 : 2005.11.01

초록

본 논문에서는 단일 국부 발진기를 이용하여 IEEE 802.11a/b/g 표준의 두 대역 신호를 처리할 수 있는 이중 대역 혼합기를 설계 구현하여 기존 방식의 단점을 개선하였다. 기존 회로 구조는 두 대역을 처리하기 위해 각각 두 개의 국부 발진기와 혼합기를 사용함으로 인하여 구조의 복잡함과 큰 전력 손실이라는 단점을 가지고 있었다. 구현된 회로는 입력 RF 2.452/5.260 GHz에서 동일한 IF인 356 MHz로 하향 변환하였을 때 변환 손실은 각각 11.6 dB, 16.8 dB, IIP3(Input 3rd Intercept Point)는 각각 8.77 dBm, 12.5 dBm으로 측정되었으며, RF-LO 격리도는 각각 36 dB, 41 dB, LO-IF 격리도는 각각 50 dB 이상의 특성을 나타내었다.

This paper presents a dual-band mixer for multi-standards of IEEE 802.1la/b/g using a single local oscillator, so as to improve the defects of legacy systems. Those systems have duplicate local oscillators and mixers to handle dual band signals, increasing complexity of system and power loss. The proposed circuit shows 11.6 dB, 16.8 dB of conversion loss and 8.77 dBm, 12.5 dBm of IIP3(Input 3rd Intercept Point) for respective bands when the two RF inputs of 2.452 and 5.260 GHz are down-converted to the identical 356 MHz If frequency. The RF-LO isolations are measured 36 dB, 41 dB at each frequencies and over 50 dB of LO-IF isolations are achieved at all cases.

키워드

참고문헌

  1. Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications, Standard IEEE 802.11b, Sep. 1999
  2. Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications, Standard IEEE 802.11g, Jun. 2003
  3. Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications, Standard IEEE 802.11a, Sep. 1999
  4. B. U. Klepser, M. Punzenberger, T. Ruhlicke, and M. Zannoth, '5-GHz and 2.4-GHz dual-band RFtransceiver for WLAN 802.11a/b/g applications', IEEE Radio Frequency Integrated Circuits(RFIC) Symposium, Jun. 2003
  5. K. Vavelidis, I. Vassiliou, T. Georgantas, A. Yamanaka, S. Kavadias, G. Kamoulakos, C. Kapnistis, Y. Kokolakis, A. Kyranas, P. Merakos, I. Bouras, S. Plevridis, and N. Haralabidis, 'A singlechip, 5.15-5.35 GHz, 2.4-2.5 GHz, 0.18 mm CMOS RF transceiver for 802.11a/b/g wireless LAN', IEEE. Solid-State Circuits Conf., Sep. 2003
  6. M. Zargari, M. Terrovitis, S. Hung-Min Jen, B. J. Kaczynski, MeeLan Lee, M. P. Mack, Srenik S. Mehta, and S. Mendis, 'A single-chip dual-band trimode CMOS transceiver for IEEE 802.11a/b/g wireless LAN', IEEE. Solid-State Circuits, vol. 39, no. 12, Dec. 2004
  7. S. F. R. Chang, W. L. Chen, S. C. Chang, C. K. Tu, C. Lin. Wei, C. H. Chien, and C. H. Tsai., 'A dual-band RF transceiver for multi standard WLAN applications', IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 3, Mar. 2005
  8. M. Cohn, J. E. Degenford, and B. A. Newman, 'Harmonic mixing with an anti-parallel diode pair', IEEE Trans., Microwave Theory and Techniques, vol. MTT-23 , no. 8, Aug. 1975
  9. M. Van der Merwe, J. B. de Swardt, 'The design and evaluation of a harmonic mixer using an antiparallel diode pair', Sep. 1998
  10. Chao Shiun Wang, Wei Chang Li, and Chorn Kuang Wang, 'A multi-band multi-standard RF front -end IEEE 802.16a for IEEE 802.16a and IEEE 802.11a/b/g applications', IEEE Trans. Circuits and Systems Symposium, vol. 4, pp. 3974-3977, May 2005