기계적 자극이 치주인대 세포의 osteoprotegerin과 receptor activator of nuclear factor ${\kappa}B$ ligand mRNA 발현에 미치는 영향

The effect of progressive tensional force on mRNA expression of osteoprotegerin and receptor activator of nuclear factor ${\kappa}B$ ligand in the human periodontal ligament cell

  • 이기주 (연세대학교 치과대학 교정학교실) ;
  • 이승일 (연세대학교 치과대학 구강생물학교실) ;
  • 황충주 (연세대학교 치과대학 교정학교실) ;
  • 옥승호 (전남대학교 치과대학 구강미생물학교실) ;
  • 전옥순 (연세대학교 치과대학 구강생물학교실)
  • Lee, Kie-Joo (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Lee, Syng-Ill (Department of Oral Biology, College of Dentistry, Yonsei University) ;
  • Hwang, Chung-Ju (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Ohk, Seung-Ho (Department of Oral Microbiology, School of Dentistry, Chonnam National University) ;
  • Tian, Yu-Shin (Department of Oral Biology, College of Dentistry, Yonsei University)
  • 발행 : 2005.08.01

초록

본 연구는 치주인대 세포에 지속적이고 점진적 인장력을 가하여 치아 이동 시 형성되는 인장부위의 기계적 자극에 대한 생화학적 전달과 치조골 흡수와 생성 조절 기전을 이해하고자 하였다 치주인대 세포가 배양된 유연한 성장 표면을 가진 배지에 지속적이고 점진적인 인장력을 가하고 골흡수 인자인 $PGE_2$와 골형성 인자인 ALP의 생성량을 1 3 5. 12시간 후에 측정하여 정량비교하였고 파골세포 분화기전을 조절하는 OPG RANKL의 인자들과 matrix metalloproteinase(MMP)-1, -8, -9, -13, tissue inhibitor of matrix metalloproteinase(TIMP)-1의 인자들을 역전사 중합효소 연쇄반응 검사하여 m-RNA 발현을 비교한 결과 치주인대 세포에 인장력을 가한 경우 대조 군보다 $PGE_2$의 농도가 적었고 (p<0.05) ALP의 농도 변화는 없었으며 OPG의 mRNA 발현이 증가하였으나, RANKL의 mRNA 발현은 감소하였다 그리고 TIMP-1과 MMP-1 -8 -9, -13의 mRNA 발현이 대조군과 차이가 없었다. 이상의 연구에서 사람의 치주인대 세포는 점진적이고 지속적인 인장력에 대한 반응으로 $PGE_2$의 생성과 RANKL의 mRNA 발현은 감소하고 OPG의 mRNA 발현은 증가하여 골흡수를 억제하는 효과를 보이는 것으로 나타났다.

Tooth movement is a result of mutual physiologic responses between the periodontal ligament and alveolar bone stimulated by mechanical strain. The PDL cell and osteoblast are known to have an influence on bone formation by controlling collagen synthesis and alkaline phosphatase activation. Moreover. recent studies have shown that the PDL cell and osteoblast release osteoprotegerin (OPG) and the receptor activator of nuclear factor ぉ ligand (RANKL) to control the level of osteoclast differentiation and activation which in turn influences bone resorption. In this study. progressively increased, continuous tensional force was applied to PDL cells. The objective was to find out which kind of biochemical reactions occur after tensional force application and to illuminate the alveolar bone resorption and apposition mechanism. Continuous and progressively increased tensile force was applied to PDL cells cultured on a petriperm dish with a flexible membrane The amount of $PGE_2$ and ALP synthesis were measured after 1, 3, 0 and 12 hours of force application. Secondly RT-PCR analysis was carried out for OPG and RANKL which control osteoclast differentiation and MMP-1 -8, -9, -13 aud TIMP-1 which regulate the resolution of collagen and resorption of the osteoid layer According to the results. we concluded that progressively increased, concluded force application to human PDL cells reduces $PGE_2$ synthesis, and increases OPG mRNA expression.

키워드

참고문헌

  1. Lindauer SJ, Britto AD. Biological response to biomechanical signals: Orthodontic mechanics to control tooth movement. Semin Orthod 2000:6:145-54 https://doi.org/10.1053/sodo.2000.8081
  2. Whedon G. Disuse osteoporosis: physiologicil aspects. Calcif Tissue Int 1984;36:146-50 https://doi.org/10.1007/BF02406148
  3. Loomer PM. The impact of microgravity on bone metabolism in vitro and in vivo. Crit Rev Oral Bio Med 2001;12:252-61 https://doi.org/10.1177/10454411010120030401
  4. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density and bone strength: a controlled prospective study. J Bone Miner Res 1998;13:1814-21 https://doi.org/10.1359/jbmr.1998.13.12.1814
  5. Roberts WE. Bone physiology of tooth movement, ankylosis, and osseointegration. Semin Orthod 2000:6:173-82 https://doi.org/10.1053/sodo.2000.8083
  6. Calvalho RS, Bumann A, Schwarzer C, Scott E, Yen EH. A molecular mechanism of integrin regulation from bone cells stimulated by orthodontic forces. Eur J Orthod 1996;18:227-35 https://doi.org/10.1093/ejo/18.1.227
  7. Basdra EK. Biological reactions to orthodontic tooth movement. J Orofac Orthop 1997;58:2-15
  8. Roberts WE, Goodwin WC Jr, Heiner SR. Cellular response to orthodontic force. Dent Clin North Am 1981 ;25:3-17
  9. Basdra EK, Komposch G. Osteoblast-like properties of human periodontalligament cells: An in vitro analysis. Eur J orthod 1997;19:615-21 https://doi.org/10.1093/ejo/19.6.615
  10. Pavlin D, Dove SB, Zadro R, Gluhak-Heinrich J. Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model: effect on type I collagen and alkaline phosphatase genes. Calcif Tissue Int 2000;67:163-72 https://doi.org/10.1007/s00223001105
  11. Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor- ${\kappa}B$ ligand and osteoprotegerin in bone cell biology. J Mol Med 2001;79:243-53 https://doi.org/10.1007/s001090100226
  12. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor ${\kappa}B$ ligand up-regulation via Prostaglandin $E_2$ synthesis. J Bone and Miner Res 2002; 17:210-20 https://doi.org/10.1359/jbmr.2002.17.2.210
  13. Davidovitch Z, Shanfeld JL, Prostaglandin $E_2\;(PGE_2)$ levels in alveolar bone of orthodontically treated cats. J Dent Res 1980;59:977
  14. Grieve WG, Johnson GK, Moore RN, Reinhardt RA, DuBois LM. Prostaglandin E (PGE) and interleukin-$1{\beta}$ $(IL-1{\beta})$ levels in gingival crevicular fluid during human orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1994:105:369-74 https://doi.org/10.1016/S0889-5406(94)70131-8
  15. Rody WJ, King GJ, Gu G. Osteoclast recruitment to sites of compression in orthodontic tooth movement. Am J of Orthod Dentofacial Orthop 2001;120:477 -89 https://doi.org/10.1067/mod.2001.118623
  16. De Pasquale V. Franchi M. Govoni P. Guizzardi S, Raspanti M, Poppi V, Ruggeri A. Striae albae: a morphological study on the human skin. Basic Appl Histochem 1987;31 :475-86
  17. Sudhir K, Wilson E, Chatterjee K, Ives HE. Mechanical strain and collagen potentiate mitogenic activity of angiotensin II in rat vascular smooth muscle cells. J Clin Invest 1993;92:3003-7 https://doi.org/10.1172/JCI116923
  18. Redlich M, Shoshan S, Palmon A. Gingival response to orthodontic force. Am J Orthod Dentofacial Orthop 1999;116:152-8 https://doi.org/10.1016/S0889-5406(99)70212-X
  19. Davidovitch Z, Shanfeld JL, Montgomery PC, Lally E, Laster L, Furst L, Korostoff E. Biochemical mediators of the effects of mechanical forces and electric currents on mineralized tissues. Calcif Tissue Int 1984;36:86-97 https://doi.org/10.1007/BF02406140
  20. 김명립, 배창. 기계적 자극과$interleukin-1{\beta}$가 치주인대 섬유아세포의 collagenase와 TIMP-1의 발현에 미치는영향. 대치교정지 1998;28:165-74
  21. 윤덕상, 이기수. 마우스에서 $IL-1{\beta}$가 염증의 발현에 미치는 영향에 관한 연구. 대치교정지 1998;28:611-26
  22. 송현섭, 김상철. Vitamin $D_3$$TGF-\beta$가 치주인대 세포 활성에 미치는 영향에 관한 연구, 대치교정지 1998;28:627-40
  23. 최현실, 노준. 인장력과 압박력이 사람 치주인대 세포의 $PGE_2$ 생성에 미치는 영향에 대한 in Vitro 연구. 이화여자대학교 대학원 박사논문; 2000
  24. Thilander B, Rygh P, Reitan K. Tissue Reactions in Orthodontics. Orthodontics- Current Principles and Techniques. St Louis: CV Mosby, 2000;117-91
  25. Rygh P, Bowling Kevin, Hovlandsdal L, Williams S. Activation of the vascular systern; A main mediator periodontal fiber remodeling in orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1986; 89:453-68 https://doi.org/10.1016/0002-9416(86)90001-1
  26. Murrell EF, Yen EH, Johnson RB. Vascular changes in the periodontal ligament after removal of orthodontic forces. Am J Orthod Dentofacial Orthop 1996;110:280-6 https://doi.org/10.1016/S0889-5406(96)80012-6
  27. Somjen D, Binderman I, Berger E, Harell A. Bone remodelling induced by physical stress is prostaglandin $E_2$ mediated. Biochim Biophys Acta 1980;627:91-100 https://doi.org/10.1016/0304-4165(80)90126-9
  28. Yeh CK, Rodan GA. Tensile forces enhance prostaglandin E synthesis in osteoblastic cells grown on collagen ribbons. Calcif Tissue Int 1984;36:67-71 https://doi.org/10.1007/BF02406136
  29. Banes AJ, Gilbert J, Taylor D, Monbureau O. A new vacuum-operated stress providing instrument that applies statis or variable duration cyclic tension or compression to cells in vitro. J Cell Sci 1985;75:35-42
  30. Hasegawa S, Sato S, Saito S, Suzuki Y, Brunette DM. Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif Tissue Int 1985;37:431-6 https://doi.org/10.1007/BF02553714
  31. Sandy JR, Meghji S, Scutte AM, Harvey W, Harris M, Meikle MC. Murine osteoblasts release bone-resorbing factors of high and low molecular weights: stimulation by mechanical deformation. Bone Miner 1989;5:155-68 https://doi.org/10.1016/0169-6009(89)90093-7
  32. Winston FK, Macarak EJ, Gorfien SF, Thibault LE. A system to reproduce and quantify the biomechanical environment of the cell. Appl J Physiol 1989;139:397-405
  33. Ngan PW, Crock B, Varghese J, Lanese R, Shanfeld J, Davidovitch Z. Immunohistochemical assessment of the effect of chemical and mechanical stimuli on cAMP and prostaglandin E levels in human gingival fibroblasts in vitro. Arch Oral Biol 1988;33:163-74 https://doi.org/10.1016/0003-9969(88)90041-6
  34. Shimizu N, Yamaguchi M, Goseki T, Ozawa Y, Saito K, Takiguchi H, Iwasawa T, Abiko Y. Cyclic-tension force stimulates interleukin-I beta production by human periodontal ligament cells. J Periodontal Res 1994;29:328-33 https://doi.org/10.1111/j.1600-0765.1994.tb01230.x
  35. Agarwal S, Chandra CS, Piesco NP, Langkamp HH, Bowen L, Baran C. Regulation of periodontal ligament cell functions by interleukinlbeta. Infect Immun 1998;66:932-7
  36. Saito M, Saito S, Ngan W. Interleukin-lbeta and prostaglandin $E_2$ are involved in the response of periodontal cells to mechanical stress in vivo and in vitro. Am J Orthod Dentofacial Orthop 1991;99:226-40 https://doi.org/10.1016/0889-5406(91)70005-H
  37. Ngan PW, Saito S, Saito M. The interactive effects of mechanical stress and $interleukin-1{\beta}$ on prostaglandin $E_2$ and cyclic AMP production in human periodontal ligament fibroblast in vitro: comparision with cloned osteoblastic cells of mouse (MC3T3-El). Arch Oral Biol 1990;9:717-25
  38. Yamaguchi M, Shimizu N, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y. Effect of different magnitudes of tension force on prostaglandin $E_2$ production by human periodontal ligament cells. Arch Oral Biol 1994;39:877-84 https://doi.org/10.1016/0003-9969(94)90019-1
  39. Yousefian J, Firouzian F, Shanfeld J, Ngan P, Lanese R, Davidovitch Z. A new experimental model for studying the response of periodontal ligament cells to hydrostatic pressure. Am J Orthod Dentofacial Orthop 1995; 108:402-9 https://doi.org/10.1016/S0889-5406(95)70038-2
  40. Long P, Hu J, Piesco N, buckley M, Agarwal S. Low magnitude of tensile strain inhibits IL -lbeta-dependent induction of pro-inflammatory cytokines and induces synthesis of IL -10 in human periodontal ligament cell in vitro. J Dent Res 2001;80:1416-20 https://doi.org/10.1177/00220345010800050601
  41. Iwasaki LR, Haack JE, Nickel JC, Reinhardt RA, Petro TM. Human interleukin-1 beta and interleukin-1 receptor antagonist secretion and velocity of tooth movement. Arch Oral Biol 2001;46:185-9 https://doi.org/10.1016/S0003-9969(00)00088-1
  42. Waddington RJ, Embery G. Proteoglycans and orthodontic tooth movement. J Orthod 2001;28:281-90 https://doi.org/10.1093/ortho/28.4.281
  43. Saito S, Ngan P, Rosol T, Saito M, Shimizu H, Shinjo N, Shanfeld J, Davidovitch Z. Involvement of PGE synthesis in the effect of intermittent pressure and interleukin-1 beta on bone resorption. J Dent Res 1991;70:27-33 https://doi.org/10.1177/00220345910700010401
  44. Alhashimi N, Frithiof L, Brudvik P, Bakhiet M. Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofacial Orthop 2001;119:307-12 https://doi.org/10.1067/mod.2001.110809
  45. Duncan GW, Yen EH, Pritchard ET, Suga DM. Collagen and prostaglandin synthesis in force-stressed periodontal ligament in vitro. J Dent Res 1984;63:665-9 https://doi.org/10.1177/00220345840630051201
  46. Bumann A, Carvalho RS, Schwarzer CL, Yen EH. Collagen synthesis from human PDL cells following orthodontic tooth movement. Eur J Orthod 1997;19:29-37 https://doi.org/10.1093/ejo/19.1.29
  47. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone and Miner Res 2000;15:2-12 https://doi.org/10.1359/jbmr.2000.15.1.2
  48. Rubin J, Murphy T, Nanes MS, Fan X. Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromsl cells. Am J Physiol Cell Physiol 2000;278:1126-32 https://doi.org/10.1152/ajpcell.2000.278.6.C1126
  49. Bolcato-Bellemin AL, Elkaim R, Abehsera A, Fausser JL, Haikel Y, Tenenbaum H. Expression of mRNAs encoding for alpha and beta integrin subunits, MMPs and TlMPs in stretched human periodontal ligament and gingival fibroblasts. J Dent Res 2000;79:1712-6 https://doi.org/10.1177/00220345000790091201