해수층의 염분 변화가 일차생산자와 상위소비자의 크기구조에 미치는 영향

Effect of Salinity Change on Biological Structure between Primary Producers and Herbivores in Water Column

  • 신용식 (목포해양대학교 해양시스템공학부) ;
  • 서호영 (여수대학교 수산생명과학부) ;
  • 현봉길 (목포해양대학교 해양시스템공학부)
  • SIN, YONGSIK (Division of Ocean System Engineering, Mokpo Maritime National University) ;
  • SOH, HOYOUNG (Division of Fisheries and Life Sciences, Yosu National University) ;
  • HYUN, BONGKIL (Division of Ocean System Engineering, Mokpo Maritime National University)
  • 발행 : 2005.05.01

초록

영산강 하구(목포항)해역에서 해수층의 염분 변화가 1차 생산자와 상위 소비자와의 연계성에 미치는 영향을 조사하기 위하여 2003년 10월부터 2004년 9월까지 매월 8개 조사정점에서 수문 개폐 여부에 따라 개방시와 비개방시로 나누어서 현장조사를 실시하였다. 영산강 하구둑으로부터 배출되어지는 담수 유입량은 강우가 집중되었던 (여름철인) 6월과 7월에 가장 많은 양의 담수가 항내로 유입되었다. 수문 개방시 표층 염분 분포는 $6\~28.9$ psu로 수문비 개방시의 $24.4\~30.3psu$ 보다 큰 차이를 보였으며, 광소멸 계수$(K_d)$ 또한 수문 개방시에 높아 탁도가 높음을 확인 할 수 있었다. 조사 기간 동안 대발생(bloom)은 하구언 수문을 개방하지 않은 2월, 5월, 7월에 내항에서 발생하였으며, 대형식물플랑크톤이 $70\%$이상의 점유율을 보이며 우점하였다. 중형과 소형식물플랑크톤이 하구언 수문 개방일인 2003년 10월, 11월, 2004년 6월, 8월, 9월에 전체 식물플랑크톤에 대하여 높은 기여율을 보여 수문 개폐에 따라 크기 구조가 변화되었다. 수문 개방시 소형과 중형동물플랑크톤은 수문을 개방하지 않았을 때 보다 낮은 생체량 분포를 보였으며, 공간적으로는 외항보다 내항에서 다소 높은 생체량 분포를 보였다. 동물플랑크톤의 분포는 전반적으로 식물플랑크톤의 생체량 분포와 비슷한 경향을 보였다 따라서 수문 개폐에 따른 염분, 영양염 유입, 탁도 혹은 광량등의 환경인자가 1차생산자의 생체량 및 크기 구조에 영향을 주고 상위소비자인 동물플랑크톤의 생체량 분포에도 영향을 미치어 결국 두 생물들간의 연계성 변화를 초래할 수 있음을 시사한다.

Samples were collected to investigate the effect of salinity change on biological interaction between primary producers and herbivores in water column of the Youngsan estuary (Mokpo Harbor) at 8 stations from October 2003 to September 2004. The highest river freshwater inputs were introduced into the estuary from the Youngsan dike during summer (June and July 2004). Ranges of salinity were between 6 and 28.9 psu when the gates of dike were open whereas the ranges were between 24.4 and 30.3 psu when the gates were closed. Algal bloom occurred in February and July when the gates were not open at the upper region of the Youngsan estuary and the bloom was dominated $(70\%)$ by large cells of phytoplankton $(micro-sized;>20{\mu}m).\;Nano-sized (2-20{\mu}m)$ and pico-sized phytoplankton $(<2{\mu}m)$ were dominant in October, November 2003, June, August and September 2004 when the gates were open suggesting that size structure was affected by river discharge from the dike. Micro-and meso-zooplankton (herbivores) displayed the similar pattern to that of phytoplankton. The biomass of zooplankton was higher when the gates were closed than when the gates open and also the biomass was higher at the upper region of the harbor system. This results suggest that freshwater inputs affect size structure and biomass of phytoplankton by changing salinity, nutrient inputs, turbidity or light level In water column resulting in the change of the interaction between primary producters and herbivores in the Youngsan estuary.

키워드

참고문헌

  1. 박래환, 조양기, 조철, 선연종, 박경양, 2001, 2000년 여름 영산강 하구의 해수 특성과 순환, 한국해양학회지 '바다' 6(4): 218-224
  2. Armstrong, R.A. 1994. Grazing limitation and nutrient limitation in marine ecosystems: Steady state solutions of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39(3): 597-608 https://doi.org/10.4319/lo.1994.39.3.0597
  3. Avnimelech, Y., B.W. Troeger and L.W. Reed. 1982. Mutual flocculation of algae and clay. Evidence and implication. Science 216: 63-65 https://doi.org/10.1126/science.216.4541.63
  4. Boyer, J.P., R.R. Christian and D.W. Stanley. 1993. Patterns phytoplankton primary productivity in the Neuse River estuary, North Carolina, USA. Marine Ecology Progress Series 97: 287¬297
  5. Boynton, W.R., W.M. Kemp and C.W. Keefe. 1982. A comparitive analysis of nutrients and other factors influencing estuarine phytoplankton production, In. Estuarine Comparisons, edited by V. Kennedy, Academic Press, New York, pp. 69-90
  6. Caraco, N.F., J.J. Cole, P.A. Raymond, D.L. Strayer, M.L. Pace, S.E.G. Findlay, D.T. Fisher. 1997. Zebra mussel invasion in a large, turbid river: Phytoplankton response to increased grazing. Ecology 78(2): 588-602 https://doi.org/10.1890/0012-9658(1997)078[0588:ZMIIAL]2.0.CO;2
  7. Caron, D.A. 1991. Evolving role of protozoa in aquatic nutrient cycles. In: Protozoa and their role in marine processes, edited by P.C. Ried, C.M. Turley, and P.H. Burkill, NATO ASI, Springer Veriag Berlin Heidelberg. G 25: 387-415(5.3)
  8. Carpenter, S.R., Kitchell, J.F., Hodgson, J.R., Cochran, P.A., Elser, J.J., Elser, M.M., Lodge, D.M., Kretchmer, D., He, X., von Ende C.N. 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863-1876 https://doi.org/10.2307/1939878
  9. Carpenter, S.R., J.F. Kitchell and J.R. Hodgson. 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634¬639
  10. Chisholm, S. W. 1992. Phytoplankton size. In Primary Productivity and Biogeochemical Cycles in the Sea, edited by. Falkowski, P. G. and Woodhead, A. D., Plenum Press, New York, pp. 213-237
  11. Cloern, J.E., A.E. Alpine, B.E. Cole, R.L.J. Wong, J.F. Arthur and M.D. Ball. 1983. River discharge controls phytoplankton dynamics in the northern San Francisco Bay estuary. Estuarine, Coastal and Shelf Science 16: 415-429 https://doi.org/10.1016/0272-7714(83)90103-8
  12. Coffin, B. Richard, Sharp and H. Jonathan. 1987. Microbial trophodynamics in the Delaware Estuary. Estuar. Coast. Shelf Sci. 41: 253-266
  13. De Madariaca, I., L. Gonzalez-Azpiri, F. Viliate and E. Orive. 1992. Plankton responses to hydrological changes induced by freshets in a shallow mesotidal estuary. Estuarine, Coastal and Shelf Science 35: 425-434 https://doi.org/10.1016/S0272-7714(05)80037-X
  14. Filardo, M.J. and W.M. Dunstan. 1985. Hydrodynamic control of phytoplankton in low salinity waters of James River estuary, Virginia, U.S.A. Estuarine, Coastal and Shelf Science 27: 61-93 https://doi.org/10.1016/0272-7714(88)90032-7
  15. Gallegos, C.L., T.E. Jordan and D.L. Correll. 1992. Eventscale response of phytoplankton to watershed inputs in a subestuary: Timing, magnitude, and location of blooms. Limnology and Oceanography 37(4): 813-825 https://doi.org/10.4319/lo.1992.37.4.0813
  16. Gieskes, W. W.and Kraay, G. W. 1986. Floristic and physiological differences between shallow and the deep nanophytoplankton communities in the euphotic zone of the tropical Atlantic ocean revealed by HPLC analysis of pigments. Nature 91: 567-576
  17. Glibert, P.M., Miller, C.A., Garside, C., Roman, M.R. and McManus, G.B. (1992). $NH_{4^{+}}$ regeneration and grazing: interdependent processes in size-fractionated ${15}^NH_{4^{+}}$ experiments. Mar. Ecol. Prog. Ser. 82: 65-74 https://doi.org/10.3354/meps082065
  18. Harding, Jr., L.W., B.W. Meeson and T.R. Fisher, Jr. 1986. Phytoplankton production in two east coast estuaries: Photosynthesislight functions and patterns of carbon assimilation in Chesapeake and Delaware Bays. Estuarine, Coastal and Shelf Science 23: 773-806 https://doi.org/10.1016/0272-7714(86)90074-0
  19. Hein, M., Pedersen, M.F. and Sand-Jensen, K. 1995. Size-dependent nitrogen uptake in micro- and macroalgae. Mar. Ecol. Prog. Ser. 118: 247-253 https://doi.org/10.3354/meps118247
  20. Holm-Hansen, O., C.J. Lorenzen, R.W. Holms and J.D.H. Strickland. 1965. Fluorometric determination of chlorophyll. J. Cons. Perm. into Explor. Mer. 30: 3-15 https://doi.org/10.1093/icesjms/30.1.3
  21. Iriarte, A. 1993. Size-fractionated chlorophyll a biomass and picophytoplankton cell density along a longitudinal axis of a temperature estuary (Southampton Water). J. Plankton Res. 15: 485-500 https://doi.org/10.1093/plankt/15.5.485
  22. Joint, I.R. and Pomroy, A.G. 1986. Photosynthetic characteristics of nanoplankton and picoplankton from the surface mixed layer. Mar. Biol. 92: 465-474 https://doi.org/10.1007/BF00392506
  23. Jonas, R. 1992. Microbial processes, organic matter and oxygen demand in the water column. In. Oxygen Dynamics in the Chesapeake Bay, edited by D.E. Smith, M. Leffler, and G. Mackiernan, Maryland Sea Grant College. pp. 113-148
  24. Kemp, W.M. and W.R. Boynton. 1981. External and internal factors regulating metabolic roles of an estuarine benthic community. Oecologia 51: 19-27 https://doi.org/10.1007/BF00344646
  25. Kivi, K., S. Kaitala, H. Kuosa, J. Kuparinen. E. Leskinen, R. Lignell, B. Marcussen and T. Tamminen. 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38(5): 893-905 https://doi.org/10.4319/lo.1993.38.5.0893
  26. Lenz, J. 1992. Microbial loop, microbial food web and classical food chain: Their significance in pelagic marine ecosystems. Arch. Hydrobiol. Beih. 37: 265-279
  27. Malone, T.C., W.M. Kemp, H.W. Ducklow, W.R. Boynton, J.H. Tuttle and R.B. Jonas. 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary. Mar. Ecol. Prog. Ser. 32: 149-160 https://doi.org/10.3354/meps032149
  28. Malone, T.C. and Chervin, M.B. 1979. The production and fate of phytoplankton size fractions in the plume of Hudson River, New York Bight. Limnol. Oceanogr. 24(4): 683-696 https://doi.org/10.4319/lo.1979.24.4.0683
  29. Malone, T.C., L.H. Crocker, S.E. Pike and B.W. Wendler. 1988. Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary. Marine Ecology Progress Series 48: 235-249 https://doi.org/10.3354/meps048235
  30. Malone, T.C., P.J. Neale and D. Boardman. 1980. Influences of estuarine circulation on the distribution and biomass of phytoplankton size fractions, In Estuarine perspectives, edited by V. Kennedy, Academic Press, New York, pp. 249-262
  31. Michaels, A.E. and M.W. Silver. 1988. Primary production, sinking fluxes and the microbial food web. Deep-Sea Res. 35: 473-490 https://doi.org/10.1016/0198-0149(88)90126-4
  32. Officer, C.B., R.B. Biggs, J.L. Taft, L.E. Cronin, M.A. Tyler and W.R. Boynton. 1984. Chesapeake Bay anoxia: origin, development, significance. Science 223: 22-27 https://doi.org/10.1126/science.223.4631.22
  33. Oviatt, C., Lane, P.F., French III and Donaghay, P. 1989. Phytoplankton species and abundance in response to eutrophication in coastal marine mesocosms. J. Plankton Res. 11(6): 1223-1244 https://doi.org/10.1093/plankt/11.6.1223
  34. Painting, S.J., Moloney, C.L., and Lucas, M.I. 1993. Simulation and field measurements of phytoplankton-bacteria-zooplankton interactions in the southern Benguela upwelling region. Mar. Ecol. Prog. Ser. 100: 55-69 https://doi.org/10.3354/meps100055
  35. Parsons, T.R., Y. Maita and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York. pp. 22-25
  36. Pennock, J.R. 1985. Chlorophyll distributions in the Delaware Estuary: Regulation by light-limitations. Estuarine, Coastal and Self Science 21: 711-&25 https://doi.org/10.1016/0272-7714(85)90068-X
  37. Sin, Y., Wetzel, R.L. and Anderson, I.C. 2000. Seasonal variations of size fractionated phytoplankton along the salinity gradient in the York River estuary, Virginia (USA). J. Plankton Res 22(10): 1945-1960 https://doi.org/10.1093/plankt/22.10.1945
  38. Sin, Y., R.L. Wetzel and l.C, Anderson. 1999. Spatioal and Temporal Characteristics of Phytoplankton Dynamics in the York River Estuary, Virginia: Analyses of Long-term Data. Estuaries. 22: 260-275 https://doi.org/10.2307/1352982
  39. Seliger, H.H., J.A Boggs and W.H. Biggley. 1985. Catastrophic anoxia in the Chesapeake Bay in 1984. Science 228: 70-73 https://doi.org/10.1126/science.228.4695.70
  40. Sundbaeck, K., B. Joensseon, P. Nilsson and I. Lindstroem. 1990. Impact of accumulating drifting macroalgae on a shallow-water sediment system: An experimental study. Mar. Ecol. Prog. Ser. 58(3): 261-274
  41. Takahashi, M. and Bienfang, P.K. 1983. Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters. Mar. Biol. 76: 203-211 https://doi.org/10.1007/BF00392736
  42. Tilman, D. 1982. Resource competition and community structure. Princeton University Press, Princeton, New Jersey
  43. Walsh, J.J. 1976. Herbivory as a factor in patterns of nutrient utilization in the sea. Limnol. Oceanogr. 21: 1-13 https://doi.org/10.4319/lo.1976.21.1.0001
  44. Welschemeyer and Lorenzen, 1985. Role of herbivory in controlling phytoplankton abundance: Annual pigment budget for a temperate marine fjord. Mar. BioI. 90(1): 75-86 https://doi.org/10.1007/BF00428217
  45. Wofsy, S.C. 1983. A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters. Limnology and Oceanography 28(6): 1144-1155 https://doi.org/10.4319/lo.1983.28.6.1144
  46. Yentsch, C.S. and D.W. Menzel, 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res. 10: 221-231