H.264 동영상 표준 부호화 방식을 위한 변형된 가우시안 모델 기반의 저 계산량 전처리 필터

A Modified Gaussian Model-based Low Complexity Pre-processing Algorithm for H.264 Video Coding Standard

  • 송원선 (숭실대학교 정보통신전자 공학부) ;
  • 홍민철 (숭실대학교 정보통신전자 공학부)
  • 발행 : 2005.02.28

초록

본 논문에서는 H.264 표준 부호화 방식의 성능 향상 및 저 계산량을 위한 가우시안 모델 기반의 전처리 필터에 대해 제안한다. 일반적인 영상 획득 장치에서 첨가된 노이즈에 의해 훼손된 동영상은 다수의 고주파 성분으로 인하여 시각적으로 불편한 현상과 압축 효율의 저하를 초래한다. 본 논문에서는 필터링 과정에서 국부 통계적 특성과 양자화 매개변수를 이용하여, 주어진 양자화 스텝 사이즈에서 노이즈 성분을 제거하고 시각적인 효과와 비트율을 개선시켜 압축 효율을 개선하고자 한다. 또한 전처리 필터의 계산량을 줄이기 위하여 간단한 형태의 국부 통계적 특성을 재 정의하고 노이즈에 대한 매개변수를 H.264의 변환과 양자화 과정을 통하여 유추하여 적용하였다. 제안된 방식의 성능을 실험 결과로부터 확인할 수 있었다.

In this paper, we present a low complexity modified Gaussian model based pre-processing filter to improve the performance of H.264 compressed video. Video sequence captured by general imaging system represents the degraded version due to the additive noise which decreases coding efficiency and results in unpleasant coding artifacts due to higher frequency components. By incorporating local statistics and quantization parameter into filtering process, the spurious noise is significantly attenuated and coding efficiency is improved for given quantization step size. In addition, in order to reduce the complexity of the pre-processing filter, the simplified local statistics and quantization parameter are introduced. The simulation results show the capability of the proposed algorithm.

키워드

참고문헌

  1. ITU-T SG16/Q6, JVT-G050rl Draft ITU-T recommendation on Final Draft International Standard of Joint Video Specification, May 2003
  2. Iain E. G. Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2003
  3. T. Wiegand, G. Sullivan, G. Njontegaard and A. Lutjra, 'Overview of the H.264/AVC Video Coding Standard,' IEEE Trans. On Circuit and Systems for Video Technology, vol.13, no.9, pp.560-576, July 2003 https://doi.org/10.1109/TCSVT.2003.815165
  4. B. Ramamurthi and A. Gersho, 'Nonlinear Space-invariant Post Processing of Blocking Coded Images,' IEEE Trans. on Circuit and Systems for Video Technology, vol.13, no. 9, pp.560-576, July 2003 https://doi.org/10.1109/TCSVT.2003.815165
  5. R. Rosenholtz and A. Zakhor, 'Iterative Procedure for Reduction of Blocking Effects in Transform Image Coding,' IEEE Trans. On Circuits and Systems for Video Technology, vol. 2, no. 91-94, March 1992 https://doi.org/10.1109/76.134377
  6. Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, 'Regularized Reconstruction to Reduce Blocking Artifacts of Block Discrete cosine Transform Compressed Images,' IEEE Trans. On Circuits and Systems for Video Technology, vol. 3, no. 6, pp. 421-432, Dec. 1993 https://doi.org/10.1109/76.260198
  7. A. K. Katsaggelos and N. P. Galatsanos, editors, Signal Recovery Techniques for Image and Video Compression and Transmission, Kluwer Academic Publishers, 1998
  8. J. C. Brailean, R. P. Kleihorst, S. N. Efstratiadis, A. K. Katsaggelos, R. L. Lagendijk, 'Noise Reduction Filters for Dynamic Image Sequences : A Revies,' IEEE Proceedings, vol. 83, no. 9, pp. 1272-1292, Sept. 1995 https://doi.org/10.1109/5.406412
  9. L. -J. Lin and A. Ortega, 'Perceptually Based Video Rate Control Using Pre-filtering and Predicted Rate-Distortion Characteristics,' Proceedings of the IEEE International Conference on Image Processing, pp.57-60, Oct. 1997
  10. C. Andrew Segall, Passant Karunaratne and Aggelos, K. Katsaggelos, 'Preprocessing of Compressed digital Video,' Proceedings of the SPIE Conference on Visual Communication and Image Processing, vol. 4310, pp. 163-174, Jan. 2001
  11. A. B. Watson, 'DCT Quantization Matrices Visually Optimized for Individual Images,' Proceedings of the SPIE Human Vision, Visual Processing and Display, IV, vol. 1913, pp. 202-216, Jan. 1993
  12. A. K. Katsaggelos, 'Iterative Image Restoration Algorithms,'Optical Engineering, vol. 28, pp.735-748, July 1989.
  13. H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, 'Low Complexity Transform and Quantization in H.264/AVC,' IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 598-603, July 2003 https://doi.org/10.1109/TCSVT.2003.814964