Effects of Dietary Fructan on Cecal Enzyme Activities in Rats

  • Kang, Soon-Ah (Department of Molecular Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Chun, Uck-Han (Taekyeung College) ;
  • Jang, Ki-Hyo (Department of Food and Nutrition, Samcheok National University)
  • Published : 2005.12.31

Abstract

In this Study, we have attempted to determine the effects of dietary fructose polymers (fructan), high molecular-weight ${\beta}-(2,6)-linked$ levan, and low-molecular-weight ${\beta}-(2,1)-linked$ inulin, on two intestinal enzymes $({\beta}-glucuronidase\;and\;{\beta}-glucosidase)$. As a preliminary experiment, when intestinal microflora were cultured in anaerobic media harboring levan or its oligosaccharides, bacterial cell growth was observed in the levanoligosaccharide-supplemented media, but not in the levan-supplemented media, indicating that levan's size is important for the utilization by intestinal bacteria of levan as an energy Source. In our animal study, the intake of a levan-rich diet was determined to significantly attenuate the activity of the harmful enzyme $({\beta}-glucuronidase$, but d id not affect the activity of ${\beta}-glucosidase$.

Keywords

References

  1. Kim, H., H. J. Eom, J. S. Lee, J. S. Han, and N. S. Han (2004) Statistical optimization of medium composition for growth of Leuconostoc citreum. Biotechnol. Bioprocess Eng. 9: 278-284 https://doi.org/10.1007/BF02942344
  2. Mitsuoka, T. (1982) Recent trends in research on intestinal flora. Bifido. Microflora 1: 3-24 https://doi.org/10.12938/bifidus1982.1.1_3
  3. Lin, J. Q., S. M. Lee, and Y. M. Koo (1992) Modeling and simulation of lactic acid fermentation with inhibition effects of lactic acid and glucose. Biotechnol. Bioprocess Eng. 9: 52-58 https://doi.org/10.1007/BF02949322
  4. Mitsuoka, T. (1992) Intestinal flora and aging. Nutr. Rev. 50: 438-446 https://doi.org/10.1111/j.1753-4887.1992.tb02499.x
  5. Hill, M. J., B. S. Drasar, V. Aries, J. Crowther, G. Hawkesworth, and R. E. O. Williams (1971) Bacteria and etiology of cancer of the large bowel. Lancet. 1: 95-102 https://doi.org/10.1016/S0140-6736(02)95563-7
  6. Kinoshita, N. and H. V. Gelvoin (1978) $\beta$-glucuronidase catalyzed hydrolysis of benzo-a-pyrene-glucuronide and binding to DNA. Science 199: 307-311 https://doi.org/10.1126/science.619459
  7. Brockett, M. and G. W. Tannock (1982) Dietary influenece on microbial activities in the caecum of mice. Can. J. Microbiol. 28: 493-498 https://doi.org/10.1139/m82-075
  8. Rhee, S. K., K. B. Song, C. H. Kim, B. S. Park, E. K. Jang, and K. H. Jang (2002) Levan. pp. 351-377. In: S. De Baets, E. J. Vandamme, and A. Steinbuchel (eds.). Biopolymers. Wiley-VCH, Weinheim, Germany
  9. Seo, E. S., J. H. Lee, J. Y. Cho, M. Y. Seo, H. S. Lee, S. S. Chang, H. J. Lee, J. S. Choi, and D. M. Kim (2004) Synthesis and characterization of fructooligosaccharides using levansucrase with a high concentration of sucrose. Biotechnol. Bioprocess Eng. 9: 339-344 https://doi.org/10.1007/BF02933054
  10. Bae, E. A., M. J. Han, and D. H. Kim (2001) Effect of Lentinus edodes water extract on some enzymes of mouse intestinal bacteria. Korean J. Food Sci. Technol. 33: 142- 145
  11. Kim, D. H., H. J. Kang, S. W. Kim, and K. Kobashi (1992) pH-Inducible $\beta$-glucuronidase and $\beta$-glucosidase of intestinal bacteria. Biol. Pharm. Bull. 40: 1667-1669
  12. Marx, S. P., S. Winkler, and W. Hartmeier (2000) Metabolization of $\beta$-(2,6)-linked fructose-oligosaccharides by different Bifidobacteria. FEMS Microbiol. Lett. 182: 163- 169
  13. Kang, S. K., S. J. Park, J. D. Lee, and T. H. Lee (2000) Physiological effects of levanoligosaccharide on growth of intestinal microflora. J. Korean Soc. Food Sci. Nutr. 29: 35-40
  14. Gibson, G. R. and M. B. Roberfroid (1995) Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125: 1401-1412
  15. Rhee, Y. K., D. H. Kim, and M. J. Han (1998) Inhibitory effect of Zizyphi fructus on $\beta$-glucuronidase and tryptophanase of human intestinal bacteria. Korean J. Food Sci. Technol. 30: 199-205
  16. Rowland, I. R., A. Mallet, and A. Wise (1983) A comparison of the activity of five microbial enzymes in cecal content from rats, mice and hamster, and response to dietary pectin. Toxicol. Appl. Pharmacol. 1983: 143-148
  17. Srikumar, T. S. (2000) Effects of consumption of white bread and brown bread on the concentrations of bile acids and neutral steroids and on fecal enzyme activities. Nutr. Res. 20: 327-333 https://doi.org/10.1016/S0271-5317(00)00126-3
  18. Rao, C. V., D. Chou, H. Ku, and B. S. Reddy (1998) Prevention of colonic aberrant crypt foci and modulation of large bowel microbial activity by dietary coffee fiber, inulin and pectin. Carcinogenesis 19: 1815-1819 https://doi.org/10.1093/carcin/19.10.1815
  19. Lee, C. M., D. W. Kim, H. C. Lee, and K. Y. Lee (2004) Pectin microspheres for oral colon delivery: preparation using spray draying method and in vitro release of indomethacin. Biotechnol. Bioprocess Eng. 9: 191-195 https://doi.org/10.1007/BF02942291
  20. Buddington, R. K., C. H. Williams, S. C. Chen, and S. A. Witherly (1986) Dietary supplement of Neosugar alters the fecal flora and decreases activities of some reductive enzymes in human subjects. Am. J. Clin. Nutr. 63: 706- 716