Production of Extracellular Water Insoluble ${\beta}-1,3-Glucan$ (Curdlan) from Bacillus sp. SNC07

  • 발행 : 2005.12.31

초록

[ ${\beta}-1,3-Glucan$ ] (curdlan) is a water-insoluble polysaccharide composed exclusively of ${\beta}-1,3\;linked$ glucose residues. Extracellular curdlan was mostly synthesized by Agrobacterium species and Alcaligenes faecalis under nitrogen-limiting conditions. In this study, we screened the microorganisms capable of producing extracellular curdlan from soil samples. For the first time, we reported Gram-positive bacterium Bacillus sp. SNC 107 capable of producing extracellular curdlan in appreciable amounts. The effect of different carbon sources on curdlan production was studied and found that the yield of curdlan was more when glucose was used as carbon source. It was also found that maximum production was achieved when the initial concentration of ammonium and phosphate in the medium was 0.5 and 1.9 g/L respectively. In this study the curdlan production was increased from 3 to 7g/L in shake flask cultures.

키워드

참고문헌

  1. Harada, T., M. Masada, K. Fujimori, and I. Maeda (1996) Production of a firm, resilient gel-forming polysaccharide by a mutant of Alcaligenes faecalis var. myxogenes 10c3. Agric. Biol. Chem. 30: 196-198
  2. Lawford, H., J. Keenan, K. Phillips, and W. Orts (1986) Influence of bioreactor design on the rate and amount of curdlan-type exopolysaccharide production by Alcaligenes faecalis. Biotechnol. Lett. 8: 145-150 https://doi.org/10.1007/BF01029368
  3. Lee, J. H., I. Y. Lee, M. K. Kim, and Y. H. Park (1999) Optimal pH control of batch processes for production of curdlan by Agrobacterium species. J. Ind. Microbiol. Biotechnol. 23: 143-148 https://doi.org/10.1038/sj.jim.2900714
  4. Harada, T., A. Misaki, and H. Saito (1968) Curdlan: a bacterial gel-forming $beta$ -1,3-glucan. Arch. Biochem. Biophys. 124: 292-298 https://doi.org/10.1016/0003-9861(68)90330-5
  5. Masayuki, T. and N. Yukihiro (1990) Noodle made of rice powder and producing method thereof. Japanese Patent 02249466
  6. Spicer, E. J. F., E. I. Goldenthal, and T. Ikeda (1999) A toxicological assessment of curdlan. Food Chem. Toxicol. 37: 455-479 https://doi.org/10.1016/S0278-6915(99)00013-7
  7. Kanke, M., E. Tanabe, H. Katayama, Y. Koda, and H. Yoshitomi (1995) Application of curdlan to controlled drug delivery. III. Drug release from sustained release suppositories in vitro. Biol. Pharm. Bull. 18: 1154-1158 https://doi.org/10.1248/bpb.18.1154
  8. Takeda-Hirokawa, N., L. P. Neoh, H. Akimoto, H. Kaneko, T. Hishikawa, I. Sekigawa, H. Hashimoto, S.-I. Hirose, T. Murakami, N. Yamamoto, T. Mimura, and Y. Kaneko (1997) Role of curdlan sulfate in the binding of HIV-l gp120 to $CD_4$ molecules and the production of gp120- mediated TNF-$\alpha$. Microbiol. Immunol. 41: 741-745 https://doi.org/10.1111/j.1348-0421.1997.tb01920.x
  9. Kim, I. Y., K. E. Rye, W. A. Choi, Y. H. Rhee, and I. Y. Lee (2003) Enhanced production of $beta$ -1,3-D-glucan by a mutant strain of Agrobacterium species. Biochem. Eng. J. 16: 163-168 https://doi.org/10.1016/S1369-703X(03)00032-9
  10. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426- 428 https://doi.org/10.1021/ac60147a030
  11. Srienc, F., B. Arnold, and J. E. Bailey (1984) Characterization of intracellular accumulation of poly-$beta$ -hydroxybutyrate (PHB) in individual cells of Alcaligenes eutrophus H16 by flow cytometry. Biotechnol. Bioeng. 26: 982-987 https://doi.org/10.1002/bit.260260824
  12. Chen, Jr., P. S., T. Y. Toribara, and H. Warner (1956) Microdetermination of phosphorus. Anal. Biochem. 28: 1756- 1758
  13. Naganishi, I., K. Kimura, S. Kusui, and E. Yamazaki (1974) Complex formation of gel-forming bacterial $beta$ -1,3- D-glucan (curdlan type polysaccharide) with dyes in aqueous solution. Carbohydr. Res. 32: 47-52 https://doi.org/10.1016/S0008-6215(00)82462-3
  14. Lee, I. Y., W. T. Seo, K. G. Kim, M. K. Kim, C. S. Park, and Y. H. Park (1997) Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium sp. J. Ind. Microbiol. Biotechnol. 18: 255-259 https://doi.org/10.1038/sj.jim.2900378
  15. Mimura, T. (1993) Biosynthesis of curdlan from culture media containing $^{13}C$-labeled glucose as the carbon source. Carbohydr. Res. 240: 153-159 https://doi.org/10.1016/0008-6215(93)84180-E
  16. Sutherland, I. W. (1977) Microbial exopolysaccharide synthesis. pp. 40-57. In: P. A. Sanford and A. Lakin (eds.). Extracellular Microbial Polysaccharides. American Chemical Society, Washington, DC, USA
  17. Kim, M. K., I. Y. Lee, J. H. Lee, K. T. Kim, Y. H. Rhee, and Y. H. Park (2000) Residual phosphate concentration under nitrogen-limiting conditions regulates curdlan production in Agrobacterium species. J. Ind. Microbiol. Biotechnol. 25: 180-183 https://doi.org/10.1038/sj.jim.7000053
  18. Farres, J., G. Caminal, and J. Lopez-Santin (1997) Influence of phosphate on rhamnose-containing exopolysaccharide rheology and production by Klebsiella 1-714. Appl. Microbiol. Biotechnol. 48: 522-527 https://doi.org/10.1007/s002530051005