References
- Taya, M., K. Ohmiya, T. Kobayashi, and S. Shimizu (1980) Monitoring and control of a cellulolytic anaerobe culture by using gas evolved as an indicator. J. Ferment. Technol. 58: 463-469
- Ohmiya, K., K. Nokura, and S. Shimizu (1983) Enhancement of cellulose degradation by Ruminococcus albus at high cellulose concentration. J. Ferment. Technol. 61: 25-30
- Taya, M., K. Ohmiya, T. Kobayashi, and S. Shimizu (1983) Enhancement of cellulose degradation by mutants from anaerobe, Ruminococcus albus. J. Ferment. Technol. 61: 197-199
-
Ohmiya, K., M. Shirai, Y. Kurachi, and S. Shimizu (1985) Isolation and properties of
$\beta$ -glucosidase from Ruminococcus albus. J. Bacteriol. 161: 432-434 -
Ohmiya, K., K. Maeda, and S. Shimizu (1987) Purification and properties of endo-1,4-
$\beta$ -glucanase from Ruminococcus albus. Carbohydr. Res. 166: 145-155 https://doi.org/10.1016/0008-6215(87)80051-4 - Ohmiya, K., K. Nagashima, T. Kajino, E. Goto, A. Tsukada, and S. Shimizu (1988) Cloning of the cellulase gene from Ruminococcus albus and its expression in Escherichia coli. Appl. Environ. Microbiol. 54: 1511-1515
-
Ohmiya, K., T. Kajino, A. Kato, and S. Shimizu (1989) Structure of a Ruminococcus albus endo-1,4-
$\beta$ -glucanase gene. J. Bacteriol. 171: 6771-6775 https://doi.org/10.1128/jb.171.12.6771-6775.1989 -
Ohmiya, K., H. Deguchi, and S. Shimizu (1991) Modification of the properties of a Ruminococcus albus endo- 1,4-
$\beta$ -glucanase by gene truncation. J. Bacteriol. 173: 636- 641 https://doi.org/10.1128/jb.173.2.636-641.1991 -
Watanabe, Y., R. Moriyama, T. Matsuda, S. Shimizu, and K. Ohmiya (1992) Purification and properties of the endo- 1,4-
$\beta$ -glucanase from Ruminococcus albus. J. Ferment. Bioeng. 73: 54-57 https://doi.org/10.1016/0922-338X(92)90232-J -
Karita, S., K. Morioka, T. Kajino, K. Sakka, K. Shimada, and K. Ohmiya (1993) Cloning and sequenceing of a novel endo-1,4-
$\beta$ -glucanase gene from Ruminococcus albus. J. Ferment. Technol. 76: 493-444 - Karita, S., K. Sakka, and K. Ohmiya (1996) Cellulose binding domains confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase IV. J. Ferment. Bioeng. 81: 553-556 https://doi.org/10.1016/0922-338X(96)81479-6
- Karita, S., T. Kimura, K. Sakka, and K. Ohmiya (1997) Purification of Ruminococcus albus endoglucanase IV using a cellulose-binding domain as an affinity tag. J. Ferment. Bioeng. 84: 354-357 https://doi.org/10.1016/S0922-338X(97)89259-8
- Sukhumavasi, J., K. Ohmiya, S. Shimizu, and K. Ueno (1988) Clostridium josui sp. nov., a cellulolytic, moderate thrmophilic species from Thai compost. Intern. J. Syst. Bacteriol. 38: 179-182 https://doi.org/10.1099/00207713-38-2-179
-
Fujino, T., T. Sasaki, K. Ohmiya, and S. Shimizu (1990) Purification and properties of an endo-1,4-
$\beta$ -glucanase translated from a Clostridium josui gene in Escherichia coli. Appl. Environ. Microbiol. 56: 1175-1178 -
Fujino, T. and K. Ohmiya (1991) Cloning of the celB gene encoding endo-1,4-
$\beta$ -glucanase-2 from Clostridium josui in Escherichia coli and the properties of the translated product. J. Ferment. Bioeng. 72: 422-425 https://doi.org/10.1016/0922-338X(91)90048-L -
Fujino, T. and K. Ohmiya (1992) Nucleotide sequence of an endo-1,4-
$\beta$ -glucanase gene (celA) from Clostridium josui. J. Ferment. Bioeng. 73: 308-313 https://doi.org/10.1016/0922-338X(92)90189-2 -
Fujino, T., S. Karita, and K. Ohmiya (1993) Nucleotide sequence of ce1B gene encoding endo-1,4-
$\beta$ -glucanase-2 and ORF1and ORF-2 forming a putative cellulase gene cluster of Clostridium josui. J. Ferment. Bioeng. 76: 243- 250 https://doi.org/10.1016/0922-338X(93)90188-E -
Sakka, K., K. Yoshikawa, Y. Kojima, S. Karita, K. Ohmiya, and K. Shimada (1993) Nucleotide sequence of the Clostridium stercorarium xylA gene encoding a bifunctional protein with
$\beta$ -D-xylosidase and$\alpha$ -L-arabinofuranosidase activities, and properties of the translated product. Biosci. Biotech. Biochem. 57: 268-272 https://doi.org/10.1271/bbb.57.268 - Sakka, K., Y. Kojima, T. Kondo, S. Kariya, K. Ohmiya, and K. Shimada (1993) Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase A: Identification of catalytic and cellulose binding domains. Biosci. Biotech. Biochem. 57: 273-277 https://doi.org/10.1271/bbb.57.273
- Sakka, K., Y. Kojima, T. Kondo, S. Karita, K. Shimada, and K. Ohmiya (1994) Purification and characterization of xylanase A from Clostridium stercorarium F-9 and a recombinant Escherichia coli. Biosci. Biotech. Biochem. 58: 1496-1499 https://doi.org/10.1271/bbb.58.1496
- Aminov, R. I., N. Golovchenko, and K. Ohmiya (1995) Expression of a celE gene from Clostridium thermocellum in Bacillus. J. Ferment. Bioeng. 79: 530-537 https://doi.org/10.1016/0922-338X(95)94743-B
- Takada, G., S. Karita, A. Takeuchi, M. M. Ahsan, T. Kimura, K. Sakka, and K. Ohmiya (1996) Specific adsorption of Clostridium stercorarium xylanase to amorphous cellulose and its desorption by cellobiose. Biosci. Biotech. Biochem. 60: 1183-1185 https://doi.org/10.1271/bbb.60.1183
- Ahsan, M. M., M. Matumoto, S. Karita, K. Sakka, and K. Ohmiya (1997) Purification and characterrization of the family J catalytic domain derived from the Clostridium thermocellum endoglucanase celJ. Biosci. Biotech. Biochem. 61: 427-431 https://doi.org/10.1271/bbb.61.427
- Ahsan, M. M., T. Kimura, S. Karita, K. Sakka, and K. Ohmiya (1996) Cloning, DNA sequencing and expression of the gene encoding Clostridium thermocellum Cellulase CelJ, the largest catalytic component of the cellulosome. J. Bacteriol. 178: 5732-5740 https://doi.org/10.1128/jb.178.19.5732-5740.1996
- Hayashi, H., K. Takagi, M. Fukumura, T. Kimura, S. Karita, K. Sakka, and K. Ohmiya (1997) Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J. Bacteriol. 179: 4246-4253 https://doi.org/10.1128/jb.179.13.4246-4253.1997
-
Jindou, S., S. Karita, E. Fujino, T. Fujino, H. Hayashi, T. Kimura, K. Sakka, and K. Ohmiya (2002)
$\alpha$ -Galactosidase Aga27A, an enzymatic component of the Clostridium josui cellulosome. J. Bacteriol 184: 600-604 https://doi.org/10.1128/JB.184.2.600-604.2002 - Ohara, H., J. Noguchi, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (2000) Sequence of egV and properties of EGV, a Ruminococcus albus endoglucanase containing a dockerin domain. Biosci. Biotechnol. Biochem. 64: 80-88 https://doi.org/10.1271/bbb.64.80
- Ohara, H., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (2000) Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci. Biotechnol. Biochem. 64: 254-260 https://doi.org/10.1271/bbb.64.254
- Kim, Y. S., A. P. Singh, S. G. Wi, K. H. Myung, S. Karita, and K. Ohmiya (2001) Cellulosome-like structures in ruminal cellulolytic bacterium Ruminococcus albus F-40 as revealed by electron microscopy. Asian-Aust. J. Anim. Sci. 14: 1429-1433 https://doi.org/10.5713/ajas.2001.1429
- Jindou, S., A. Souda, S. Karita, T. Kajino, P. Beguin, D. Wu, M. Inagaki, T. Kimura, K. Sakka, and K. Ohmiya (2004) Cohesin/dockerin interactions within and between Clostridium josui and Clostridium thermocellum: Binding selectivity between cognate dockerin and cohesin domains and species specificity. J. Biol. Chem. 279: 9867-9874 https://doi.org/10.1074/jbc.M308673200
- Kawazu, T., T. Ohta, K. Ito, M. Shibata, T. Kimura, K. Sakka, and K. Ohmiya (1996) Expression of a Ruminococcus albus celulase gene in tabacco suspension cells. J. Ferment. Bioeng. 82: 205-209 https://doi.org/10.1016/0922-338X(96)88809-X
-
Ohmiya, K., H. Deguchi, and S. Shimizu (1991) Modification of the properties of a Ruminococcus albus endo- 1,4-
$\beta$ -glucanase by gene truncation. J. Bacteriol. 173: 636-641 https://doi.org/10.1128/jb.173.2.636-641.1991 -
Deguchi, H., K. Watanabe, T. Sasaki, T. Matsuda, S. Shimizu, and K. Ohmiya (1991) Purification and properties of the endo-1,4-
$\beta$ -glucanase from Ruminococcus albus and its gene product in Escherichia coli. J. Ferment. Bioeng. 71: 221-225 https://doi.org/10.1016/0922-338X(91)90271-H - Kimura, T., T. Mizutani, K. Sakka, and K. Ohmiya (2003) Stable expression of thermostable xylanase gene of Clostridium thermocellum in tobacco BY-2 cells. J. Biosci. Bioeng. 95: 397-400 https://doi.org/10.1016/S1389-1723(03)80074-9
- Sun, J.-L., K. Sakka, S. Karita, T. Kimura, and K. Ohmiya (1998) Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBDs to xylan hydrolysis. J. Ferment. Bioeng. 85: 63-38 https://doi.org/10.1016/S0922-338X(97)80355-8
- Fukumura, M., K. Sakka, K. Shimada, and K. Ohmiya (1995) Nucleotide sequence of the Clostridium stercorarium F-9 xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product. Biosci. Biotech. Biochem. 59: 40-46 https://doi.org/10.1271/bbb.59.40
- Fukumura, M., A. Tanaka, K. Sakka, and K. Ohmiya (1995) Process of thermal denaturation of xylanase (XynB) from Clostridium stercorarium F-9. Biosci. Biotech. Biochem. 59: 47-50 https://doi.org/10.1271/bbb.59.47
- Sun, J.-L., T. Kawazu, T. Kimura, S. Karita, K. Sakka, and K. Ohmiya (1997) High expression of the xylanase B gene from Clostridium stercorarium in tobacco cells. J. Ferment. Bioeng. 84: 219-223 https://doi.org/10.1016/S0922-338X(97)82057-0
- Kawazu, T., T. Sun, M. Shibata, T. Kimura, K. Sakka, and K. Ohmiya (1999) Expression of a bacterial endoglucanase gene in tobacco increases digestibility of its cell wall fibers. J. Biosci. Bioeng. 88: 421-425 https://doi.org/10.1016/S1389-1723(99)80220-5
- Kimura, T., T. Mizutani, T. Tanaka, T. Koyama, K. Sakka, and K. Ohmiya (2003) Molecular breeding of transgenic rice expressing a xylanase domain of the xynA gene from Clostridium thermocellum. Appl. Microbiol. Biotechnol. 62: 374-379 https://doi.org/10.1007/s00253-003-1301-z
- Shimizu. M., T. Kimura, T. Koyama, K. Suzuki, N. Ogawa, K. Miyashita, K. Sakka, and K. Ohmiya (2002) Molecular breeding of transgenic rice plants expressing a bacterial chlorocatechol dioxygenase gene. Appl. Environ. Microbiol. 68: 4061-4066 https://doi.org/10.1128/AEM.68.8.4061-4066.2002
- Evvyernie, D., S. Yamazaki, K. Morimoto, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (2000) Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. J. Biosci. Bioeng. 89: 596-601 https://doi.org/10.1016/S1389-1723(00)80063-8
- Evvyernie, D., K. Morimoto, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (2001) Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M- 21. J. Biosci. Bioeng. 91: 339-343 https://doi.org/10.1263/jbb.91.339
- Morimoto, K., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (1999) Seqencing, expression, and transcription analysis of the Clostridium paraputrificum chiA gene encoding chitinase ChiA. Appl. Microbiol. Biotechnol. 51: 340-347 https://doi.org/10.1007/s002530051400
- Morimoto, K., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (2001) Characterization of Clostridium paraputrificum chitinase A from a recombinant Escherichia coli. J. Biosci. Bioeng. 92: 466-468 https://doi.org/10.1263/jbb.92.466
- Morimoto, K., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (1997) Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase chiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. J. Bacteriol. 179: 7306-7314 https://doi.org/10.1128/jb.179.23.7306-7314.1997
-
Li, H., K. Morimoto, N. Katagiri, T. Kimura, K. Sakka, and K. Ohmiya (2002) A novel
$\beta$ -N-acetylglucosaminidase of Clostridium paraputrificum M-21 with high activity on chitobiose. Appl. Microbiol. Biotechnol. 60: 420-427 https://doi.org/10.1007/s00253-002-1129-y -
Li, H., K. Morimoto, T. Kimura, K. Sakka, and K. Ohmiya (2003) A new type of
$\beta$ -N-Acetylglucosaminidase from hydrogen-producing Clostridium paraputrificum M-21. J. Biosci. Bioeng. 96: 268-274 https://doi.org/10.1016/S1389-1723(03)80192-5 - Sakka, K., M. Kawase, D. Baba, K. Morimoto, S. Karita, T. Kimura, and K. Ohmiya (2003) Electrotransformation of Clostridium paraputrificum M-21 with some plasmids. J. Biosci. Bioeng. 96: 304-306 https://doi.org/10.1016/S1389-1723(03)80198-6
- Sakka, M., T. Kimura, K. Sakka, and K. Ohmiya (2004) Hydrogen Gas Generation from refuse-derived fuel (RDF) under wet conditions. Biosci. Biotechnol. Biochem. 68: 466-467 https://doi.org/10.1271/bbb.68.466