Design, Optimization and Validation of Genomic DNA Microarrays for Examining the Clostridium acetobutylicum Transcriptome

  • 발행 : 2005.10.31

초록

Microarray technology has contributed Significantly to the understanding of bacterial genetics and transcriptional regulation. One neglected aspect of this technology has been optimization of microarray-generated signals and quality of generated information. Full genome microarrays were developed for Clostridium acetobutylicum through spotting of PCR products that were designed with minimal homology with all other genes within the genome. Using statistical analyses it is demonstrated that Signal quality is significantly improved by increasing the hybridization volume. possibly increasing the effective number of transcripts available to bind to a given spot, while changes in labeled probe amounts were found to be less sensitive to improving signal quality. In addition to Q-RT-PCR, array validation was tested by examining the transcriptional program of a mutant (M5) strain lacking the pSOL1 178-gene megaplasmid relative to the wildtype (WT) strain. Under optimal conditions, it is demonstrated that the fraction of false positive genes is 1% when considering differentially expressed genes and 7% when considering all genes with signal above background. To enhance genomic-scale understanding of organismal physiology, using data from these microarrays we estimated that $40{\sim}55%$ of the C. acetobutylicum genome is expressed at any time during batch culture, similar to estimates made for Bacillus subtilis.

키워드

참고문헌

  1. Ye, R. W., T. Wang, L. Bedzyk, and K. M. Croker (2001) Applications of DNA microarrays in microbial systems. J. Microbiol. Meth. 47: 257-272 https://doi.org/10.1016/S0167-7012(01)00308-6
  2. Conway, T. and G. K. Schoolnik (2003) Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol. Microbiol. 47: 879-889 https://doi.org/10.1046/j.1365-2958.2003.03338.x
  3. Rhodius, V. A. and R. A. LaRossa (2003) Uses and pitfalls of microarrays for studying transcriptional regulation. Curr. Opin. Microbiol. 6: 114-119 https://doi.org/10.1016/S1369-5274(03)00034-1
  4. Dharmadi, Y. and R. Gonzalez (2004) DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnol. Progr. 20: 1309-1324 https://doi.org/10.1021/bp0400240
  5. Jones, D. T. and D. R. Woods (1986) Acetone-butanol fermentation revisited. Microbiol. Rev. 50: 484-524
  6. Tomas, C. A., K. V. Alsaker, H. P. J. Bonarius, W. T. Hendriksen, H. Yang, J. A. Beamish, C. J. Parades, and E. T. Papoutsakis (2003) DNA-array based transcriptional analysis of asporogenous, non-solventogenic Clostridium acetobutylicum strains SKO1 and M5. J. Bacteriol. 185: 4539-4547 https://doi.org/10.1128/JB.185.15.4539-4547.2003
  7. Alsaker, K. V., T. R. Spitzer, and E. T. Papoutsakis (2004) Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress. J. Bacteriol. 186: 1959-1971 https://doi.org/10.1128/JB.186.7.1959-1971.2004
  8. Tomas, C. A., N. E. Welker, and E. T. Papoutsakis (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and large changes in the cell's transcriptional program. Appl. Environ. Microbiol. 69: 4951-4965 https://doi.org/10.1128/AEM.69.8.4951-4965.2003
  9. Tummala, S. B., S. G. Junne, C. J. Paredes, and E. T. Papoutsakis (2003) Transcriptional analysis of product-concentration driven changes in cellular programs of recombinant Clostridium acetobutylicum strains. Biotechnol. Bioeng. 84: 842-854 https://doi.org/10.1002/bit.10851
  10. Tomas, C. A., J. A. Beamish, and E. T. Papoutsakis (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J. Bacteriol. 186: 2006-2018 https://doi.org/10.1128/JB.186.7.2006-2018.2004
  11. Hegde, P., R. Qi, K. Abernathy, C. Gay, S. Dharap, R. Gaspard, J. E. Hughes, E. Snesrud, N. Lee, and J. Quackenbush (2000) A concise guide to cDNA microarray analysis. Biotechniques 29: 548-562
  12. Yang, H., H. Haddad, C. Tomas, K. Alsaker, and E. T. Papoutsakis (2003) A segmental nearest neighbor normalization and gene identification method gives superior results for DNA-array analysis. P. Natl. Acad. Sci. USA 100: 1122-1127 https://doi.org/10.1073/pnas.0237337100
  13. Xu, D., G. S. Li, L. Y. Wu, J. Z. Zhou, and Y. Xu (2002) PRIMEGENS: robust and efficient design of gene-specific probes for microarray analysis. Bioinformatics 18: 1432-1437 https://doi.org/10.1093/bioinformatics/18.11.1432
  14. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990) Basic Local Alignment Search Tool. J. Mol. Biol. 215: 403-410
  15. Rozen, S. and H. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. pp 365-386. In: S. Krawetz, S. Misener, (eds.). Methods in Molecular Biology. Humana Press, Totowa, NJ
  16. Richmond, C. S., J. D. Glasner, R. Mau, H. F. Jin, and F. R. Blattner (1999) Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res. 27: 3821-3835 https://doi.org/10.1093/nar/27.19.3821
  17. Raghavachari, N., Y. P. Bao, G. S. Li, X. Y. Xie, and U. R. Müller (2003) Reduction of autofluorescence on DNA microarrays and slide surfaces by treatment with sodium borohydride. Anal. Biochem. 312: 101-105 https://doi.org/10.1016/S0003-2697(02)00440-2
  18. Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA. 95: 14863-14868 https://doi.org/10.1073/pnas.95.25.14863
  19. Clark, S. W., G. N. Bennett, and F. B. Rudolph (1989) Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A transferase (EC 2.8.3.9) and in other solvent pathway enzymes. Appl. Environ. Microbiol. 55: 970-976
  20. Wiesenborn, D. P., F. B. Rudolph, and E. T. Papoutsakis (1988) Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl. Environ. Microbiol. 54: 2717-2722
  21. Tummala, S. B., N. E. Welker, and E. T. Papoutsakis (2003) Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J. Bacteriol. 185: 1923-1934 https://doi.org/10.1128/JB.185.6.1923-1934.2003
  22. Buday, Z., J. C. Linden, and M. N. Karim (1990) Improved acetone butanol fermentation analysis using subambient HPLC column temperature. Enzyme Microb. Tech. 12: 24-27 https://doi.org/10.1016/0141-0229(90)90175-P
  23. Wei, Y., J. M. Lee, C. Richmond, F. R. Blattner, J. A. Rafalski, and R. A. LaRossa (2001) High-density microarray-mediated gene expression profiling of Escherichia coli. J. Bacteriol. 183: 545-556 https://doi.org/10.1128/JB.183.2.545-556.2001
  24. Schena, M., D. Shalon, R. Heller, A. Chai, P. O. Brown, and R. W. Davis (1996) Parallel human genome analysis: microarray-based expression monitoring of 1,000 genes. Proc. Natl. Acad. Sci. USA 93: 10614-10619 https://doi.org/10.1073/pnas.93.20.10614
  25. Chhabra, S. R., K. R. Shockley, S. B. Conners, K. L. Scott, R. D. Wolfinger, and R. M. Kelly (2003) Carbohydrateinduced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J. Biol.Chem. 278: 7540-7552 https://doi.org/10.1074/jbc.M211748200
  26. Worley, J., K. Bechtol, S. Penn, D. Roach, D. Hanzel, M. Trounstine, and D. Barker (2000) A systems approach to fabricating and analyzing DNA microarrays. In: M. Schena, editor. Microarray Biochip Technology. Eaton Publishing, Natick, MA, USA
  27. Yuen, P. K., G. Li, Y. Bao, and U. R. Muller (2003) Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays. Lab Chip 3: 46-50 https://doi.org/10.1039/b210274a
  28. Adey, N. B., M. Lei, M. T. Howard, J. D. Jensen, D. A. Mayo, D. L. Butel, S. C. Coffin, T. C. Moyer, D. E. Slade, M. K. Spute, A. M. Hancock, G. T. Eisenhoffer, B. K. Dalley, and M. R. McNeely (2002) Gains in sensitivity with a device that mixes microarray hybridization solution in a 25-micron-thick chamber. Anal. Chem. 74: 6413-6417 https://doi.org/10.1021/ac026082m
  29. Gadgil, C., A. Yeckel, J. J. Derby, and W. S. Hu (2004) A diffusion-reaction model for DNA microarray assays. J. Biotechnol. 114: 31-45 https://doi.org/10.1016/j.jbiotec.2004.05.008
  30. Borden, J. R., C. J. Paredes, and E. T. Papoutsakis (2005) Diffusion, mixing, and associated dye effects in DNAmicroarray hybridizations. Biophys. J. In press
  31. ;olling, J., G. Breton, M. V. Omelchenko, K. S. Makarova, Q. Zeng, R. Gibson, H. M. Lee, J. Dubois, D. Qiu, J. Hitti, Y. Wolf, R. L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M. J. Daly, G. N. Bennett, E. V. Koonin, and D. R. Smith (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183: 4823-4838 https://doi.org/10.1128/JB.183.16.4823-4838.2001
  32. Cornillot, E., R. V. Nair, E. T. Papoutsakis, and P. Soucaille (1997) The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. 179: 5442-5447 https://doi.org/10.1128/jb.179.17.5442-5447.1997
  33. Stim-Herndon, K. P., R. Nair, E. T. Papoutsakis, and G. N. Bennett (1996) Analysis of degenerate variants of Clostridium acetobutylicum ATCC 824. Anaerobe 2: 11-18 https://doi.org/10.1006/anae.1996.0002
  34. Tseng, G. C., M. K. Oh, L. Rohlin, J. C. Liao, and W. H. Wong (2001) Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res. 29: 2549-2557 https://doi.org/10.1093/nar/29.12.2549
  35. Harris, L. M., N. E. Welker, and E. T. Papoutsakis (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J. Bacteriol. 184: 3586-3597 https://doi.org/10.1128/JB.184.13.3586-3597.2002
  36. Strauch, M. A., G. B. Spiegelman, M. Perego, W. C. Johnson, D. Burbulys, and J. A. Hoch (1989) The transition state transcription regulator abrB of Bacillus subtilis is a DNA-binding protein. EMBO J. 8: 1615-1621
  37. Strauch, M., V. Webb, G. Spiegelman, and J. A. Hoch (1990) The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl. Acad. Sci. USA 87: 1801-1805
  38. Molle, V., M. Fujita, S. T. Jensen, P. Eichenberger, J. E. Gonzalez-Pastor, J. S. Liu, and R. Losick (2003) The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50: 1683-1701 https://doi.org/10.1046/j.1365-2958.2003.03818.x
  39. Scotcher, M. C., F. B. Rudolph, and G. N. Bennett (2005) Expression of abrB310 and sinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 71: 1987-1995 https://doi.org/10.1128/AEM.71.4.1987-1995.2005
  40. Ravagnani, A., K. C. Jennert, E. Steiner, R. Grunberg, J. R. Jefferies, S. R. Wilkinson, D. I. Young, E. C. Tidswell, D. P. Brown, P. Youngman, J. G. Morris, and M. Young (2000) Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol. Microbiol. 37: 1172-1185 https://doi.org/10.1046/j.1365-2958.2000.02071.x
  41. Helmann, J. D. and C. P. Moran Jr (2002) RNA polymerase and sigma factors. pp 289-312. In: A. L. Sonenshein, J. A. Hoch, R. Losick, (eds.). Bacillus subtilis and Its Closest Relatives: From Genes to Cells. ASM Press, Washington, D.C., USA
  42. Schaffer, S., N. Isci, B. Zickner, and P. Durre (2002) Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum. Electrophoresis 23: 110-121 https://doi.org/10.1002/1522-2683(200201)23:1<110::AID-ELPS110>3.0.CO;2-G
  43. Eymann, C., A. Dreisbach, D. Albrecht, J. Bernhardt, D. Becher, S. Gentner, L. T. Tam, K. Büttner, G. Buurman, C. Scharf, S. Venz, U. Völker, and M. Hecker (2004) A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4: 2849-2876 https://doi.org/10.1002/pmic.200400907
  44. Kanehisa, M., S. Goto, S. Kawashima, Y. Okuno, and M. Hattori (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res. 32: D277-D280 https://doi.org/10.1093/nar/gkh063