Systemic Optimization of Microalgae for Bioactive Compound Production

  • Kim, Jeong-Dong (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
  • 발행 : 2005.10.31

초록

The complexity of the biological system/biological systems has been fascinating and challenging for a long time. With the advent of mathematical tools with various omics technology, systems biology was born and is already ubiquitous in every area of biology and biotechnology. Microalgal biotechnology is no exception in this new trend. As tens of microalgal genomes become publicly available on the Internet, vast amounts of data from genomics, transcriptomics, and proteomics are reported everyday. Though there has not yet been enough data gathered on microalgal metabolomics, the in silica models for relatively simple cyanobacteria or for organelles, such as chloroplasts, will appear presently. With the help of systems biology, a more in-depth understanding of microalgae will be possible. Consequently, most industrially-interested microalgae can be metabolically redesigned/reconfigured as cell factories. Microalgae will be served as the hosts in white biotechnology.

키워드

참고문헌

  1. Palsson, B. (2000) The challenges of in silico biology. Nat. Biotechnol. 18: 1147-1150
  2. Weiner, N. (1948) Cybernetics or Control and Communication in the Animal and the Machine, MIT Press, Cambridge, MA, USA
  3. Kitano, H. (2001) Foundations of Systems Biology, MIT Press, Cambridge, MA, USA
  4. Tomita, M. and T. Nishioka (2005) Metabolomics: The Frontier of Systems Biology, Spinger-Verlag, Tokyo, Japan
  5. Palsson, B. (2002) In silico biology through 'omics'. Nat. Biotechnol. 20: 649-650 https://doi.org/10.1038/nbt0702-649
  6. Schwikowski, B., P. Uetz, and S. Fields (2000) A network of protein-protein interactions in yeast. Nat. Biotechnol. 18: 1257-1261 https://doi.org/10.1038/82360
  7. Lee, R. E. (1989) Phycology, Cambridge University Press, Cambridge, UK
  8. Vonshak, A. (1997) Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology, Taylor & Francis, London, UK
  9. Dufosse, L., P. Galaup, A. Yaron, S. M. Arad, P. Blanc, K. N. Chidambara Murthy, and G. A. Ravishankar (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality$?$Trends Food Sci. Technol. 16, 389-406 https://doi.org/10.1016/j.tifs.2005.02.006
  10. Hejazi, M. A. and R. H. Wijffels (2004) Milking of microalgae. Trends Biotechnol. 22: 189-194 https://doi.org/10.1016/j.tibtech.2004.02.009
  11. Liang, S., X. Liu, F. Chen, and Z. Chen (2004) Current microalgal health food R & D activities in China. Hydrobiologia 512: 45-48 https://doi.org/10.1023/B:HYDR.0000020366.65760.98
  12. Borowitzka, M. A. (1992) Algal biotechnology products and processes - matching science and economics. J. Appl. Phycol. 4: 267-279 https://doi.org/10.1007/BF02161212
  13. Chapman, D. J. and K. W. Gellenbeck (1989) A historical perspective of algal biotechnology. In: Algal and Cyanobacterial Biotechnology (Cresswell, R. C., T. A. V. Rees, and H. Shah, Eds.), pp. 1-27. Longman Scientific & Technical, Harlow, UK
  14. Bailey, J. E. (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat. Biotechnol. 17: 616-618 https://doi.org/10.1038/10794
  15. http://www.genomesonline.org/. GOLD (Genomes OnLine Database)
  16. http://www.jgi.doe.gov/. DOE Joint Genome Institute
  17. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=genomeprj. NCBI Genome Project
  18. Eom, H., Park, S., Lee, C.-G., and Jin, E. (2005) Gene expression profiling of an eukaryotic microalga, Haematococcus pluvialis. J. Microbiol. Biotechnol. in press
  19. Kaneko, T., A. Tanaka, S. Sato, H. Kotani, T. Sazuka, N. Miyajima, M. Sugiura, and S. Tabata (1995) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res. 2: 153-166 https://doi.org/10.1093/dnares/2.4.153
  20. Kaneko, T., S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura, S. Sasamoto, T. Kimura, T. Hosouchi, A. Matsuno, A. Muraki, N. Nakazaki, K. Naruo, S. Okumura, S. Shimpo, C. Takeuchi, T. Wada, A. Watanabe, M. Yamada, M. Yasuda, and S. Tabata (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3: 109-136ጀༀ鲒킓툑兇確ಗ⨀ᔀက颐탔ဒ兇颺ಗ⨀ᔀᄀ힕탐ᄒ兇뢺ಗ⨀᠀ሀ闖탐ᄒ兇?ಗ⨀ᔀጀ闖탐ᄒ兇ಗ⨀ᔀ᐀姒탑ᄒ兇ᢻಗ⨀ᘀᔀ帕퇑ᄒ兇㢻ಗ⨀ᔀᘀ岌გᄒ兇墻ಗ⨀ᔀᜀ岌გᄒ兇碻ಗ⨀ᔀ᠀垒郒ᄒ兇颻ಗ⨀᐀ᤀ垒郒ᄒ兇뢻ಗ⨀ᔀᨀ墓ვᄒ兇?ಗ⨀ᔀᬀ鞔퀑ሒ兇ಗ⨀ᔀᰀ鯖ဒሒ兇ᢼಗ⨀ᔀᴀ훍톑ሒ兇㢼ಗ⨀ᔀḀ᪖銒ሒ兇墼ಗ⨀ᔀἀ鼓鎒ሒ兇碼ಗ⨀᐀ 힓鎒ሒ兇颼ಗ⨀ᔀ℀?邔ሒ兇뢼ಗ⨀ᤀ∀?큔ጒ兇?ಗ⨀ᔀ⌀颕킑ጒ兇ಗ⨀ᔀ␀颕킑ጒ兇ᢽಗ⨀ᔀ─咐郐ጒ兇㢽ಗ⨀ᔀ☀鮓郒ጒ兇墽ಗ⨀᐀✀墔탔ጒ兇碽ಗ⨀᐀⠀巑逐ᐒ兇颽ಗ⨀ᔀ⤀巑逐ᐒ兇뢽ಗ⨀ᔀ⨀ퟒ킑ᐒ兇?ಗ⨀ᔀ⬀ퟒ킑ᐒ兇ಗ⨀ᘀⰀퟒ킑ᐒ兇ᢾಗ⨀ᘀⴀ墔탑ᐒ兇㢾ಗ⨀ᔀ⸀墔탑ᐒ兇墾ಗ⨀ᜀ https://doi.org/10.1093/dnares/3.3.109
  21. Domain, F., L. Houot, F. Chauvat, and C. Cassier-Chauvat (2004) Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is critical to the survival of cells facing inorganic carbon starvation. Mol. Microbiol. 53: 65-80 https://doi.org/10.1111/j.1365-2958.2004.04100.x
  22. Kobayashi, M., T. Ishizuka, M. Katayama, M. Kanehisa, M. Bhattacharyya-Pakrasi, H. B. Pakrasi, and M. Ikeuchi (2004) Response to oxidative stress involves a novel peroxiredoxin gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 45: 290-299 https://doi.org/10.1093/pcp/pch034
  23. Hihara, Y., A. Kamei, M. Kanehisa, A. Kaplan, and M. Ikeuchi (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13: 793-806 https://doi.org/10.1105/tpc.13.4.793
  24. Schmitt Jr., W. A. and G. Stephanopoulos (2003) Prediction of transcriptional profiles of Synechocystis PCC6803 by dynamic autoregressive modeling of DNA microarray data. Biotechnol. Bioeng. 84: 855-863 https://doi.org/10.1002/bit.10843
  25. Burja, A. M., S. Dhamwichukorn, and P. C. Wright (2003) Cyanobacterial postgenomic research and systems biology. Trends Biotechnol. 21: 504-511 https://doi.org/10.1016/j.tibtech.2003.08.008
  26. Matsunaga, T., H. Nakayama, M. Okochi, and H. Takeyama (2001) Fluorescent detection of cyanobacterial DNA using bacterial magnetic particles on a MAG-microarray. Biotechnol. Bioeng. 73: 400-405 https://doi.org/10.1002/bit.1073
  27. Taroncher-Oldenburg, G., E. M. Griner, C. A. Francis, and B. B. Ward (2003) Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Appl. Environ. Microbiol. 69: 1159-1171 https://doi.org/10.1128/AEM.69.2.1159-1171.2003
  28. Kucho, K., K. Okamoto, S. Tabata, H. Fukuzawa, and M. Ishiura (2005) Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii. Plant Mol. Biol. 57: 889-906 https://doi.org/10.1007/s11103-005-3248-1
  29. Eom, H., C.-G. Lee, and E. Jin, (2005) Gene expression profile in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta, submitted
  30. Kashino, Y., W. M. Lauber, J. A. Carroll, Q. Wang, J. Whitmarsh, K. Satoh, and H. B. Pakrasi (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41: 8004-8012 https://doi.org/10.1021/bi026012+
  31. Wang, Y., J. Sun, and P. R. Chitnis (2000) Proteomic study of the peripheral proteins from thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. Electrophoresis 21: 1746-1754 https://doi.org/10.1002/(SICI)1522-2683(20000501)21:9<1746::AID-ELPS1746>3.0.CO;2-O
  32. Gan, C. S., K. F. Reardon, and P. C. Wright (2005) Comparison of protein and peptide prefractionation methods for the shotgun proteomic analysis of Synechocystis sp. PCC 6803. Proteomics 5: 2468-2478 https://doi.org/10.1002/pmic.200401266
  33. Whitelegge, J. P., J. E. Katz, K. A. Pihakari, R. Hale, R. Aguilera, S. M. Gomez, K. F. Faull, D. Vavilin, and W. Vermaas (2004) Subtle modification of isotope ratio proteomics; an integrated strategy for expression proteomics. Phytochemistry 65: 1507-1515 https://doi.org/10.1016/j.phytochem.2004.05.018
  34. Herranen, M., N. Battchikova, P. Zhang, A. Graf, S. Sirpio, V. Paakkarinen, and E. M. Aro (2004) Towards functional proteomics of membrane protein complexes in Synechocystis sp PCC 6803. Plant Physiol. 134: 470-481 https://doi.org/10.1104/pp.103.032326
  35. Huang, F., I. Parmryd, F. Nilsson, A. L. Persson, H. B. Pakrasi, B. Andersson, and B. Norling (2002) Proteomics of Synechocystis sp. strain PCC 6803: Identification of plasma membrane proteins. Mol. Cell. Proteom. 1: 956-966 https://doi.org/10.1074/mcp.M200043-MCP200
  36. Schroder, W. P. and T. Kieselbach (2003) Update on chloroplast proteomics. Photosynth. Res. 78: 181-193 https://doi.org/10.1023/B:PRES.0000006914.52898.67
  37. Norling, B., E. Zak, B. Andersson, and H. Pakrasi (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 436: 189-192 https://doi.org/10.1016/S0014-5793(98)01123-5
  38. Nelson, N. and A. Ben-Shem (2005) The structure of photosystem I and evolution of photosynthesis. Bioessays 27: 914-922 https://doi.org/10.1002/bies.20278
  39. Sazuka, T., M. Yamaguchi, and O. Ohara (1999) Cyano2 Dbase updated: Linkage of 234 protein spots to corresponding genes through N-terminal microsequencing. Electrophoresis 20: 2160-2171 https://doi.org/10.1002/(SICI)1522-2683(19990801)20:11<2160::AID-ELPS2160>3.0.CO;2-
  40. Bernal, A., U. Ear, and N. Kyrpides (2001) Genomes OnLine Database (GOLD): a monitor of genome projects worldwide. Nucleic Acids Res. 29: 126-127 https://doi.org/10.1093/nar/29.1.126
  41. Mohammady, N. G. D., Y. C. Chen, A. A. El-Mahdy, R. F. Mohammad, and E. D. Mohammady (2005) Temporal alterations of Nannochloropsis salina (Eustigmatophyceae) grown under aqueous diesel fuel stress. J. Appl. Phycol. 17: 161-170 https://doi.org/10.1007/s10811-005-5510-y
  42. Wang, S.-B., Q. Hu, M. Sommerfeld, and F. Chen (2004) Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics 4: 692-708 https://doi.org/10.1002/pmic.200300634
  43. Palsson, B. O. (2004) In silico biotechnology: Era of reconstruction and interrogation. Curr. Opin. Biotechnol. 15: 50-51 https://doi.org/10.1016/j.copbio.2004.01.006