Effect of Giant Embryonic Rice Supplementation on the Lipid Peroxide Levels and Antioxidative Enzyme Activities in the Plasma and Liver of Streptozotocin-induced Diabetic Rats

거대배아미 식이가 streptozotocin 유도 당뇨 흰쥐의 혈장과 간 조직 중 지질과산화물 농도와 항산화 효소 활성에 미치는 효과

  • Lee, Youn-Ri (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Kang, Mi-Young (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Nam, Seok-Hyun (Department of Biological Science, Ajou University)
  • Published : 2005.12.31

Abstract

Effects on the feeds of streptozotocin-induced diabetic rats with a giant embryonic rice on lipid peroxides level and antioxidative enzyme activites in plasma and liver tissues were investigated. Along with the experimental periods, all animals in diabetic groups had a lower increase rate in body weight than the normal control group. A giant embryonic rice-fed group showed a inhibition in the decrease of body weight, and a increase in feed intake compared to the normal control group. The organ weights of the diabetic control group were heavier than those of the normal control while rice-fed groups including the giant embryonic rice-fed group were found to have lower organ weights, and its blood sugar level was found to be lower than those of the normal group. Lipid peroxides of the giant embryonic rice-fed animals showed a lower lipid peroxidation values compared to that of the diabetic control group. Plasma vitamin A and E concentrations of the diabetic control group were significantly decreased compared to the normal control while those of the giant embryonic rice-fed group were found to be significantly higher than those of the diabetic control. Of the hepatic antioxidative enzymes, SOD activity of the giant embryonic rice-fed group was higher than that of the diabetic control group. Taken these together, low lipid peroxidation values and, in contrast, high antioxidative enzyme activities were thought to be a cause for decreasing hepatic oxidative damages.

Streptozotocin으로 당뇨를 유발한 쥐에서 거대배아미의 급여가 혈장 및 간조직의 지질과산화물과 항산화효소에 미치는 영향을 조사하였다. 실험기간동안 모든 당뇨군들의 체중증가는 정상군에 비해서는 유의적으로 낮았다. 거대배아미를 급여한 군은 당뇨대조군에 비해서 체중감소현상이 억제되었으며, 식이섭취량은 정상군에 비해 당뇨대조군들이 높게 나타났다. 장기무게는 당뇨군이 당뇨대조군보다 높았으나 거대배아미를 포함한 쌀식이군에서는 낮게 나타났고, 혈당의 변화는 당뇨대조군에 비해서 거대배아미군이 감소하는 경향을 보였다. 혈장 및 간조직 중의 지질과산화물은 당뇨대조군에 비해서 거대배아미가 낮은 수준의 지질과산화물 값을 보였다. 혈장중의 비타민 A와 E의 농도는 당뇨대조군이 정상군에 비해서 유의적으로 감소하였으며 당뇨대조군에 비해 거대배아미급여군이 유의적으로 높게 나타났다. 간조직의 항산화 효소 중 SOD의 활성은 거대배아미군이 당뇨대조군에 비하여 높았다. 이상의 결과에서 거대배아미를 급여한 당뇨쥐의 낮은 지질과산화물값과 높은 항산화계 효소의 활성이 간조직의 산화적 손상을 감소시키는 원인으로 생각된다.

Keywords

References

  1. Moon, S. J. (1996) Nutritional problems of Korean. Kor. J. Nutr. 29, 371-380
  2. Morel, D. W. and Chisolm, G. M. (1989) Antioxidant treatment of diabetic rats inhibitor lipoprotein oxidation and cytoxicity. J. Lipid Res, 30, 1827-1834
  3. Sosenko, J. M., Lattimer, S. A, Kamijo, M., Van-Huysen C., Sima, A. A. and Greene, D. A. (1980) Osmotically-induced nerve taurine depletion and the compatible osmolyte hypothesis in experimental diabetic neuropathy in the rat. Diabetologia 36, 608-614 https://doi.org/10.1007/BF00404069
  4. Mann, J., Mann, J. and Truswel, A. S. (1998) Essentials of Human Nutrition. Oxford University Press, New York
  5. Wade, K., Miki, H., Ethoh, M. and Okuda, F. (1983) The inhibitory effects of lipid peroxide on the activity of the membrane bound and the soluilized lipoprotein lipase. Jpn. Clin. J. 47, 837-842
  6. Ha, A. W. and Kim, H. M. (1999) The Study of lipid-peroxidation, antioxidant enzymes, and the antioxidant vitamin in NIDDM patients with microvascular-diabetic complications. Korean J. Nutr. 21, 17-23
  7. Lee, D. M., Hoffman, W. H., Carl, G. F. and Cornwell, P. E. (2002) Lipid peroxidation and antioxidant vitamin prior to, during, and after correction of diabetic ketoacidosis. J. Diabetes Complications 16, 294-300 https://doi.org/10.1016/S1056-8727(01)00215-X
  8. Son, H. Y. (1992) Lipoprotein(s) and diabetes mellitus. J. Korean Diabetes Assoc. 16, 275-280
  9. Sato, Y., Hotta, N., Sukamoto, N., Natenoka, S., Ohishi, N. and Yagi, N. (1979) Lipid peroxide level in plasma of diabetic patients. Biochem. Med. 21, 104-110 https://doi.org/10.1016/0006-2944(79)90061-9
  10. Schraer, C. D., Adler, A. I., Mayer, A. M., Haldeson, K. R. and Trimble, B. A. (1997) Diabetes complications and mortality among Alaska natives: 8 years of observation. Diabetes Care 20, 314-321 https://doi.org/10.2337/diacare.20.3.314
  11. MacLennan, A. H., Wilson, D. H. and Taylor, R. H. (1996) Prevalence and cost of the alternative medicine in Australia. Lancet 347, 569-57 https://doi.org/10.1016/S0140-6736(96)91271-4
  12. Sato, H. and Omura, T. (1981) New endosperm mutations induced by chemical mutagens in rice, Oyiza sativa. L.. Jpn. J. Breed. 31, 316-326
  13. Kim, K. H., Park, S. Z., Koh, H. J. and Hen, M. H. (1992) New mutants for endosperm and embryo characters in rice: two dull endosperm and giant embryo. Proc. of SABRAO Intern. Symp. on the Impacts of Biol. Res. on Agric. Productivity pp. 125-131
  14. Kang, M. Y., Lee, Y. R. and Nam S. H. (2004) Antioxidative and antimutagenic activity of ethanolic extracts from giant embrynoic rices. J. Korean. Soc. Appl. Biol. Chem. 47, 61-66
  15. Kang, M. Y., Kim, S., Koh, H. J. and Nam S. H. (2004) Antioxidative activity of germinated specialty Rices. Korean J. Food Sci. Technol. 36, 624-630
  16. Takeuchi, N., Matsumiya, K, Takahashi, Y., Higashino, K. and Tanaka, F. (1984) Thiobarbituric acid reactive substances (TBARS) and lipid metabolism in $\alpha$-tocopherol deficient rats. Exp. Gerontol. 12, 63-68
  17. Uchiyama, M. and Mihara, M. (1978) Determination of malondialdehyde precursor in tissuse by TBA test. Anal. Biochem. 86, 271-278 https://doi.org/10.1016/0003-2697(78)90342-1
  18. Bieri, G, Toliver, J. J. and Catignaani, G. L. (1979) Simultaneous determination of $\alpha$-tocopherol and retionl in plasmia or red blood cells by high pressure liquid chromatography. Am. J. Clin. Nutr. 32, 2143-2149
  19. Abei, H. (1974) In methods of enzymatic analysis Bergmeyer HU, Chemie Weinhein, F.R.G. pp. 673-684
  20. Marklund, S. and Marklund, G. (1974) Involvement of superoxide anion radical in the antioxidation of pyrogallol and a convenient assay for superoxide disumatase. Eur. J. Biochem. 47, 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  21. Paglia, D. E. and Valentine, W. N. (1967) Studies of the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158-169
  22. Best. J. D. (2000) Diabetic dyslipidaemia-current treatment recommendations. Drugs 59, 1101-1111 https://doi.org/10.2165/00003495-200059050-00006
  23. Gallaher, D. D., Csallany, A. S., Shoeman, D. W. and Olson, J. M. (1993) Diabetes increase excretion of urinary malonaldehyde conjugates in rats. Lipid 28, 663-666 https://doi.org/10.1007/BF02536063
  24. Madar, Z. (1983) Effects of brown rice and soybean dietary fiber on the control of glucose and lipid metabolism in diabetic rats. Am. J. Clin Nutr. 38, 388-393
  25. Wesson, L. G. (1989) Compensatory growth and other growth response of the kidney. Nephron 51, 149-184 https://doi.org/10.1159/000185282
  26. Goldsterin, J. L. and Brown, M. S. (1997) The low-density lipoprotein pathway and its relation to atherosclerosis. Ann. Rev. Biochem. 46, 897-930 https://doi.org/10.1146/annurev.bi.46.070177.004341
  27. Park, S. H., Lee, Y. K. and Lee, H. S. (1994) The effects of dietary fiber on gastrointestinal functions and lipid and glucose metabolism in streptozotocin induced diabetic rats. Korean. J. Nutr. 27, 311-322
  28. Choi, T. W., Son, K. H and Kim, S. H (1991) The effect of nicotinamide on plasma lipid compositions in sterptozotocin induced rats. Korean J. Nutr. 20, 306-311
  29. Sathishsekar, D. and Subramanian, S. (2005) Beneficial effects of Momordica charantia in the treatment of STZ-induced diabetes in experimental rats. Biol. Pharm. Bull. 28, 978-983 https://doi.org/10.1248/bpb.28.978
  30. Levy, Y., Zaltsberg, H. Ben-Amotz, A, Kanter, Y. and Aviram, M. (2000) Dietary supplementation of a natural isomer mixture of $\beta$-carotene inhibits oxidation of LDL derived from patients with diabetes melitus. Ann. Nutr. Metab. 44, 54-60 https://doi.org/10.1159/000012821
  31. Upritchard J. E., Sutherland W. H. and Mann, J. I. (2000) Effect of supplementation with tomato juice, vitamin E and vitamin C on LDL oxidation and products of inflammatory activity in type 2 diabetes. Diabetes Care 23, 733-738 https://doi.org/10.2337/diacare.23.6.733
  32. Dixon, L. J., Tsin, A. T. and Basu, T. K. (2000) The metabolic availability of vitamin A is decreased at the onset of diabetes in BB rats. J. Nutri. 130, 1958-1962
  33. Basu, T. K. and Basualdo, C. (1997) Vitamin A homeostasis and diabetes mellitus. Nutrition 13, 804-806 https://doi.org/10.1016/S0899-9007(97)00192-5
  34. Liu, S., Lee, I. M., Ajani, U., Cole, S. R., Buring, J. E. and Manson J. E. (2001) Intake of vegetables rich in carotenoids and risk of coronary heart disease in men; the physician's health study. Int. J. Epidemiol. 30, 130-135 https://doi.org/10.1093/ije/30.1.130
  35. Polidori, M. C., Meccoci, P., Stahl, W., Parente, B., Cecchetti, R., Cherubini, A., Cao, P., Sies, H. and Senin, U. (2000) Plasma levels of lipophilic antioxidants in very old patients with type 2 diabetes. Diabetes Metab. Res. Rev. 16, 15-19 https://doi.org/10.1002/(SICI)1520-7560(200001/02)16:1<15::AID-DMRR71>3.0.CO;2-B
  36. Aruna, R. V., Ramesh, B. and Kartha, V. N. (1999) Effect of $\beta$-carotene on protein glycosylation in aloxan induced diabetic rats. Indian J. Exp. Biol. 37, 399-401
  37. Wolff, S. P., Jiang, Z. Y. and Hunt, J. V. (1991) Protein glycation and oxidative stress in diabetes mellitus and aging. Free Radic. Biol. Med. 10, 339-352 https://doi.org/10.1016/0891-5849(91)90040-A
  38. MeLennan, S. V., Hefferman, S. and Wright, L. (1991) Changes in hepatic glutathion metabolism in diabetes. Diabates 40, 344-348 https://doi.org/10.2337/diabetes.40.3.344
  39. Deisseroth A. and Dounce, A. L. (1970) Catalase physical and chemical properties, mechanism of catalysis and physiological role. Physiol. Rev. 50, 3-24