Characterization of Cellulolytic Activity from Pseudomonas sp. JH1014

Pseudomonas sp. JH1014의 섬유소분해 활성 특성

  • Heo, Hee-Yeon (Department of Agricultural Chemistry, Sunchon National University) ;
  • Jeong, Yu-Jin (Department of Agricultural Chemistry, Sunchon National University) ;
  • Shin, Eun-Sun (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kwon, Eun-Ju (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kim, Yu-Jeong (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kim, Jung-Ho (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University)
  • 허희연 (순천대학교 생명환경과학부 생물환경) ;
  • 정유진 (순천대학교 생명환경과학부 생물환경) ;
  • 신은선 (순천대학교 생명환경과학부 생물환경) ;
  • 권은주 (순천대학교 생명환경과학부 생물환경) ;
  • 김유정 (순천대학교 생명환경과학부 생물환경) ;
  • 김정호 (순천대학교 생명환경과학부 생물환경) ;
  • 김훈 (순천대학교 생명환경과학부 생물환경)
  • Published : 2005.12.31

Abstract

Pseudomonas sp. JH1014 was isolated from stream water as a detergent-compatible alkaline protease producing microorganism. The strain produced no detectable cellulolytic activity in LB medium. The addition of carboxymethyl cellulose induced the production of carboxymethyl cellulase (CMCase) without causing any significant change in the growth pattern of the strain. The strain reached its maximum growth after 9 to 12 h at $37^{\circ}C$, and the production of CMCase in the presence of the substrate reached its maximum after 21 h of growth at $37^{\circ}C$. The optimum pH of the crude enzyme preparation was pH 6.0. The enzyme had an optimal temperature at $55^{\circ}C$, and retained 70% of its original activity when preincubated at $70^{\circ}C$ for 10 min. Activity staining of the crude enzyme preparation separated on an SDS-PAGE gel showed two active bands with molecular masses of 54 and 30 kDa, indicating that Pseudomonas sp. JH1014 produced at least 2 kinds of CMCase.

Pseudomonas sp. JH1014는 세제 첨가용으로 사용 가능한 알칼리성 단백질 분해효소를 생산하는 균주로 하천수에서 분리되었다. 이 균주는 LB 배지에서는 CMCase를 생산하지 않았으나, 배지에 기질인 carboxymethyl cellulose를 첨가하면 분해효소인 CMCase의 생산이 유도되었으며, CMC 첨가에 따른 증식 양상의 변화는 없었다. CMC를 첨가한 배지로 $37^{\circ}C$에서 진탕배양 하였을 때 균의 증식은 $9{\sim}12$시간 후에 최대에 도달하였으며, 생산된 효소의 활성은 21시간 후에 최대에 도달하였다. 조효소액의 CMCase 활성 최적 pH는 6.0, 최적 온도는 $55^{\circ}C$였으며, $70^{\circ}C$에서 10분 동안 열처리한 후의 잔존활성은 70%였다. 부분 정제된 효소를 SDS-PAGE 후 활성염색한 결과 분자량이 54와 30 kDa인 두 개의 활성띠가 관찰되어, Pseudomonas sp. JH1014는 적어도 두 종류의 CMCase를 생산하는 것으로 보인다.

Keywords

References

  1. Cowling, E. B. and Kirk, T. K. (1976) Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion processes. Biotechnol. Bioeng. Symp. 6, 95-123
  2. Wilke, C. R., Yang, R. D. and Stockar, U. V. (1976) Preliminary cost analyses for enzymatic hydrolysis of newsprint. Biotechnol. Bioeng. Symp. 6, 135-175
  3. Bucht, B. and Eriksson, K. E. (1969) Extracellular enzyme system utilized by the rot fungus Stereum sanguinolentum for the breakdown of cellulose. IV. Separation of cellobiase and aryl beta-glucosidase activities. Arch. Biochem. Biophys. 129, 416-420 https://doi.org/10.1016/0003-9861(69)90197-0
  4. Eriksson, K. E. and Wood, T. M. (1985) Biodegradation of cellulose. In Biosynthesis and biodegradation of wood components (Higuchi, T. ed.) Academic Press, New York, pp. 469-503
  5. Wood, T. M. (1985) Properties of cellulolytic enzyme systems. Biochem. Soc. Trans. 13, 407-410
  6. Gow, L. A. and Wood, T. M. (1988) Breakdown of crystalline cellulose by synergistic action between cellulase components from Clostridium thermocellum and Trichoderma koningii. FEMS Microbiol. Lett. 50, 247-252 https://doi.org/10.1111/j.1574-6968.1988.tb02946.x
  7. Boisset, C., Fraschini, C., Schulein, M., Henrissat, B. and Chanzy, H. (2000) Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl. Environ. Microbiol. 66, 1444-1452 https://doi.org/10.1128/AEM.66.4.1444-1452.2000
  8. Party, J. B., Stewart, J. C. and Heptinstall. (1983) Purification of the major endoglucanase from Aspergillus fumigatus Fresenius. Biochem. J. 213, 437-444
  9. Ishaque, M. and Kluepfel, D. (1980) Cellulase complex of a mesophilic Streptomyces strain. Can. J. Microbiol. 26, 183-189 https://doi.org/10.1139/m80-028
  10. Malfait, M., Godden, B. and Penninckx, M. J. (1984) Growth and cellulase production of Micromonospora chalcae and Pseudonocardia thermophila. Ann. Microbiol. (Paris) 135B, 7989
  11. Park, S. R., Cho, S. J., Kim, M. K., Ryu, S. K., Lim, W. J., An, C. L., Hong, S. Y., Kim, J. H., Kim, H., and Yun, H. D. (2002) Activity enhancement of Cel5Z from Pectobacterium chrysanthemi PY35 by removing C-terminal region. Biochem. Biophys. Res. Commun. 291, 425-430 https://doi.org/10.1006/bbrc.2002.6437
  12. Kim, H. and Kim, J. (2002) Isolation and identification of a detergent-compatible alkaline protease producing Pseudomonas sp. JH1014. Agric. Chem. Biotechnol. 45, 61-65.
  13. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination reducing sugar. Anal. Chem. 31, 426-428 https://doi.org/10.1021/ac60147a030
  14. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  15. Lee, K. D., Kim, J. and Kim, H. (1996) Isolation and characterization of Bacillus sp. KD1014 producing carboxymethyl-cellulase. J. Microbiol. 34, 305-310
  16. Lee, K. D., Kim, J. and Kim, H. (1999) Purification and characterization of carboxymethyl-cellulase produced by Bacillus sp. KD1014. Agric. Chem. Biotechnol. 42, 107-112