Streptomyces sp. YB-26으로부터 생산된 phytase의 특성

Characterization of Phytase Produced by Streptomyces sp. YB-26

  • 윤기홍 (우송대학교 의료영양식품과학부 식품생물과학)
  • Yoon, Ki-Hong (School of Food Science & Biotechnology, Woosong University)
  • 발행 : 2005.12.31

초록

토양으로부터 분리된 약 1,200여주의 방선균으로부터 세포외로 phytase를 분비 생산하는 방선균 YB-26이 분리되었다. 분리균의 16S rRNA 염기서열을 조사한 결과 Streptomyces속에 속하는 균주의 서열과 상동성이 높았다. G.S.M 배지에서 분리균을 배양하여 얻은 배양 상등액을 ammonium sulfate 분획(15-70%), DEAE-Sepharose column 및 Q-Sepharose column 크로마토그래피를 하여 phytase를 부분 정제하였다. 부분정제된 phytase를 사용하여 효소반응을 실시한 결과 $60^{\circ}C$와 pH 7.0에서 최대활성을 보였으며, pH 6.0-8.0 범위에서 최대활성의 90%이상이 되는 활성을 나타냈다. 이 효소는 열안정성이 높지 않으며, $CaCl_2$의 존재하에서도 열안정성이 변화가 없는 것으로 확인되었다.

Approximately twelve hundred strains of Actonomycetes isolated from domestic soli were tested for their ability to produce extracellular phytase. Of all these isolates a strain, YB-26, that had the highest potential for phytase activity was chosen. The nucleotide sequence of 16S rDNA of the isolate YB-26 showed the highest similarity to that of strains beloning to genus Streptomyces. The partially purified extracellular phytase was obtained from the culture filtrate of Streptomyces sp. YB-26 grown on GSM broth by ammonium sulfate precipitation (15-70%), DEAE-Sepharose column and Q-Sepharose column chromatography. The partially purified enzyme showed the maximum activity for hydrolysis of phyate at $60^{\circ}C$ and pH 7.0, and retained 90% of its maximum activity at the range of pH $6.0{\sim}8.0$. It was thermolabile and its thermostability did not increase in the presence of calcium chloride.

키워드

참고문헌

  1. Reddy, N. R., Sathe, S. K. and Salunkhe, D. K. (1982) Phytates in legumes and cereals. Adv. Food Res. 28, 1-92
  2. Erdman, J. W. Jr. and Poneros-Schneier, A. (1989) Phytic acid interactions with divalent cations in foods and in the gastrointestinal tract. Adv. Exp. Med. Biol. 249, 161-171
  3. Nayani, N. R. and Markakis, P. (1983) Effects of inositol phosphates on mineral utilization. Fed. Proc. 45, 819-826
  4. Urbano, G., Aranda, P., Gomez-Villalva, E., Frejnagel, S., Porres, J. M., Frias, J., Vidal-Valverde, C. and Lopez-Jurado, M. (2003) Nutritional evaluation of pea (Pisum sativum L.) protein diets after mild hydrothermal treatment and with and without added phytase. J. Agric. Food Chem. 51, 2415-2420 https://doi.org/10.1021/jf0209239
  5. Kerovuo, J., Lauraeus, M., Nurminen, P., Kalkkinen, N. and Apajalathi, J. (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64, 2079-2085
  6. Jareonkitmongkol, S., Ohya, M., Watanabe, R., Takagi, H. and Nakamori, S. (1997) Partial purification of phytase from a soil isolate bacterium, Klebsiella oxytoca MO-3. J. Ferment. Bioeng. 83, 393-394 https://doi.org/10.1016/S0922-338X(97)80149-3
  7. Greiner, R., Konietzny, U. and Jany, K. -D. (1993) Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys. 303, 107-113 https://doi.org/10.1006/abbi.1993.1261
  8. Nayini, N. R. and Markakis, P. (1984) The phytase of yeast. Lebensm Wiss Technol. 17, 24-26
  9. Vohra, A. and Satyanarayana, T. (2004) A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. J. Appl. Microbiol. 97, 471-476 https://doi.org/10.1111/j.1365-2672.2004.02327.x
  10. Howson, S. J. and Davis, R. P. (1983) Production of phytate-hydrolyzing enzyme by some fungi. Enzyme Microb. Technol. 5, 377-382 https://doi.org/10.1016/0141-0229(83)90012-1
  11. Wyss, M., Brugger, R., Kronenberger, A., Remy, R., Fimbel, R., Oesterhelt, G., Lehmann, M. and van Loon, A. P. (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl. Environ. Microbiol. 65, 367-373
  12. Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X, Fan, H. Q., Guo, M. J. and Zhang, S. L. (2004) Isolation, characterization, and molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris. J. Biochem. Mol. Biol. 37, 282-291
  13. Xiong, A. S, Yao, Q. H., Peng, R. H., Han, P. L., Cheng, Z. M. and Li, Y (2005) High level expression of a recombinant acid phytase gene in Pichia pastoris. J. Appl. Microbiol. 98, 418-428 https://doi.org/10.1111/j.1365-2672.2004.02476.x
  14. Garrett, J. B., Kretz, K. A., O'Donoghue, E., Kerovuo, J., Kim, W., Barton, N. R., Hazlewood, G. P., Short, J. M., Robertson, D. E. and Gray, K. A. (2004) Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl. Environ. Microbiol. 70, 3041-3046 https://doi.org/10.1128/AEM.70.5.3041-3046.2004
  15. Lee, E. -H., Kim, C. -J. and Yoon, K. -H. (2005) Characterization and xylanase productivity of Streptomyces sp. WL-2. Kor. J. Microbiol. Biotechnol. 33, 178-183
  16. Engelen, A. J., van der Heeft, F. C., Randsdorp, P. H. and Smit, E. L. (1994) Simple and rapid determination of phytase activity. J. AOAC Int. 77, 760-764
  17. Felsenstein, J. (2002) In PHYLIP(phylogeny inference package), version 3.6a: Department of Genetics, University of Washington, Seattle, WA
  18. Sautou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  19. Oh, B. -C., Choi, W. -C., Park, S., Kim, Y. -O. and Oh, T. -K. (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol. Biotechnol. 63, 362-372 https://doi.org/10.1007/s00253-003-1345-0
  20. Oh, B. C., Chang, B. S., Park, K. H., Ha, N. C., Kim, H. K., Oh, B. H. and Oh, T. -K. (2001) Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DSll. Biochemistry 40, 9669-9676 https://doi.org/10.1021/bi010589u