DOI QR코드

DOI QR Code

The Measurements of Biomass Burning Aerosols from GLI Data

GLI 자료를 이용한 생체 소각 에어러솔 측정에 대한 연구

  • Lee Hyun Jin (Department of Atmospheric Science, Pusan National University) ;
  • Fukushima Hajime (School of High-Technology for Human Welfare, Tokai University) ;
  • Ha Kyung-Ja (Department of Atmospheric Science, Pusan National University) ;
  • Kim Jae Hwan (Department of Atmospheric Science, Pusan National University)
  • Published : 2005.08.01

Abstract

This study has investigated the suitable wavelength for detecting biomass burning aerosols. We have performed the analysis of the wavelength at 380nm in near-UV, 400nm, 412nm, 460nm, and 490nm in visible, and 2100nm in shortwave infrared regions from the Global Imager measurements. It is well known that the UV bands have the advantage of the aerosols retrieval due to the low surface reflectance and a weak effect of Bidirectional Reflectivity Distribution Function. However, the pure surface reflectances of shortwave visible bands, except 412nm, are as low as that of 380nm in near-UV over northeast Asia. In order to detect the aerosol signal, we have retrieved the aerosol reflectance as a function of wavelength based on the surface reflectivity contrast method for the period of May 2003. It is interesting that the retrieved aerosol reflectance with 460nm is slightly more sensitive than that with 380nm. Additionally, we have applied the TOMS aerosol index method to determine the best pair for biomass burning aerosols and found that the pair of 380 and 460nm results in the best signal for retrieving aerosols.

본 연구에서는 GLI 센서의 자외선인 380nm, 가시광선 영 역의 400nm와 412nm, 가시광선의 푸른 파장영역인 460nm와 490nm, 근파장 적외선인 2100nm를 비교 분석하여 생체 소각 에어러솔 탐지에 효과적인 파장을 살펴보고자 하였다. 자외선 파장이 지표 반사도가 낮고 BRDF 효과도 작게 나타나므로 에어러솔 추정시 효과적이라고 알려져 있으나 412nm를 제외한 400nm, 460nm, 490nm에서 380nm와 비슷한 지표 반사도를 보였다. 지표 반사도 대비 방법을 2003년 5월에 적용해 에어러솔 반사도를 산출하였을때 460nm의 에어러솔 반사도가 380nm 보다 민감하게 나타났다. GLI의 두파장을 이용해 TOMS 에어러솔 지수를 산출하였을 때 생체 소각 에어러솔은 흡수성 에어러솔로 나타났으며 380nm와 460nm를 이용한 TOMS 에어러솔 지수가 AERONET의 에어러솔 광학 두께와 높은 상관관계를 보이며 에어러솔의 광학 두께에 민감하게 반응하고 있다. 그러므로 생체소각 에어러솔을 탐지할 때에는 가시광선의 푸른색 영역의 파장대가 효과적일 것으로 사료된다.

Keywords

References

  1. 이권호, 김영준,2004. 인공위성 자료와 AEROENT관측자료를 이용한 러시아산불 시 발생한 에어로졸의 중장거리 모니터링, 한국대기환경학회지, 20:437-450
  2. 이권호,김정은,김영준,김 준,2004. 2003년 5월 러시아지역에서 발생한 산불로 인한 스모크 에어로졸 플룸의 영향, 한국대기환경학회지, 20:603-613
  3. Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tame, and I. Slutsker, 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations, American Meteorological Society, 59: 590-608
  4. Fukushima, H. and M. Toratani, 1997. Asian dust aerosol: Optical effect on satellite ocean color signal and a scheme of tis correction, Journal of Gophysical Research, 102: 17119-17130 https://doi.org/10.1029/96JD03747
  5. Gordon, H. R. and M. Wang, 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with Sea WiFS: A preliminary algorithm, Applied Optics, 33: 443-452 https://doi.org/10.1364/AO.33.000443
  6. Hauser, A., D. Oesch, and S. Wunder le, 2004. NOAA AVHRR derived Aerosol Optical Depth (AOD) over Land: A comparison with AERONET data, Optica Puray Aplicada, 37: 3131-3135
  7. Herman, J. R. and E. A. Celarier, 1997a. Earth surface reflectivity climatology at 340-380 nm from TOMS data, Journal of Geophysical Research, 102: 28003-28011 https://doi.org/10.1029/97JD02074
  8. Herman, J. R., P. K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, 1997b. Global distribution of UV -absorbing aerosols from . Nimbus7/TOMS data, Journal of Geophysical Research, 102: 16911-16922 https://doi.org/10.1029/96JD03680
  9. Holben, B. N., D. Tame, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. S. Schafer, B. Chatenet, F. Lavenu, Y. J. Kaufman, J. Bande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karneli, N. T. O'Neill, C. Pietras, R. T Pinker, K. Voss, and G. Zibordi, 2001. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET, Journal of Geophysical Research, 106: 1206712097 https://doi.org/10.1029/2001JD900014
  10. Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, Eds., 1996. Climate Change 1995: The science of Climate Change, Intergovernmental Panel on Climate Change, Cambrige University Press, USA
  11. Hsu, N. C, J. R. Herman, O. Torres, B. N. Holben, D. Tanre, T. F. Eck, A. Smirnov, B. Chatenet, and F. Lavenu, 1999. Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications, Journal of Geophysical Research, 104: 6269-6279 https://doi.org/10.1029/1998JD200086
  12. Hsu, N. C., S. C. Tsay, M. D. King, and J. R. Herman, 2004. Aerosol retrievals over brightreflecting source regions, IEEE Transactions on Geoscience and Remote Sensing, 42: 557-569 https://doi.org/10.1109/TGRS.2004.824067
  13. Kaufman, Y. J., D. Tame, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. N. Teillet, 1997. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, Journal of Geophysical Research, 102: 16815-16830 https://doi.org/10.1029/97JD01496
  14. King, M. D., Y. J. Kaufman, D. Tame, and T. Nakajima, 1999. Remote sensing of tropospheric aerosols from space: Past, Presents, and Future, BuIltin of the American Meteorological Society, 80: 2229-2259 https://doi.org/10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2
  15. McClain, C. R, G. Feldman, and W. Esaias, 1993. Biological oceanic productivity, in The Atlas of Satellite Observations Related to Global Change, edited by R Gurney, J. L. Foster, and C. L. Parkinson, Cambridge University Press, USA
  16. McKenzie, R. L., M. Kotkamp, and W. Ireland, 1996. Upwelling UV spectral irradiances and surface albedo measurements at Lauder, New Zealand, Geophysical Research Letters, 23, 1757-1760 https://doi.org/10.1029/96GL01668
  17. Nakajima, T. Y., T. Nakajima, N. Nakajima, H. Fukushima, N. Kuji, A Uchiyama, and M. Kishino, 1998. Optimization of the advanced earch observing satellite II Global Imager channels by use of radiative transfer calculations, Applied Optics, 37: 3149-3163 https://doi.org/10.1364/AO.37.003149
  18. Nakajima, T. and M. Tanaka, 1988. Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation, Journal of Quantitative Spectroscopy and Radiative Transfer, 40: 51-69 https://doi.org/10.1016/0022-4073(88)90031-3
  19. Reid, J. W., J. E. Kinney, D. L. Westphal, B. N. Holben, E. J. Welton, Si-C. Tsay, D. F. Eleutero, J. R. Campbell, S. A Christopher, P. R. Colarco, H. H. Jonsson, J. M. Livingston, H. B. Maring, M. L. Meier, P. Pilewskie, J. M. Pilewskie, J. Pro spero, E. A. Reid, L. A. Remer, P. B. Russell, D. L. Savoie, A. Smirnonv, and D. Tame, 2003. Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE), Journal of Geophysical Research, 108: doi:10.1029/2002JD002493郴ヨ⨀?잖⨀飴ヨ⨀뤏덐ꣴヨ⨀렏頏탴ヨ⨀਀탴ヨ⨀灤—⨀ᤀက灤—⨀ヨ⨀Āヨ⨀ヨ⨀̀ヨ⨀ヨ⨀Ȁヨ⨀?ヨ⨀Ȁ?ヨ⨀ —⨀Ȁ —⨀ࠅ—⨀Ȁࠅ—⨀᠅—⨀Ȁ᠅—⨀ —⨀Ȁ —⨀怍—⨀Ȁ怍—⨀䠑—⨀Ȁ䠑—⨀䀓—⨀Ȁ䀓—⨀⠗—⨀Ȁ⠗—⨀怗—⨀Ȁ怗—⨀頗—⨀Ȁ頗—⨀—⨀Ȁ—⨀—⨀Ȁ—⨀젣—⨀Ȁ젣—⨀⠨—⨀Ȁ⠨—⨀ာ—⨀Ȁာ—⨀—⨀Ȁ—
  20. Remer, L. A, D. Tanre, Y. J. Kaufman, C. Ichoku, S. Mattoo, R. Levy, D. A Chu, B. Holben, O. Dubovik, A Smironov, J. V. Martins, R. R. Li. and Z. Ahmad, 2002. Validation of MODIS aerosol retrieval over ocean, Geophysical Research Letters, 29: doi:10.1029/2001GL013204
  21. Schwartz, S. E. and Coauthors, 1995. Group report: Connections between aerosol properties and forcing of climate, Aerosol Forcing of Climate, R. J. Charlson and J. Heintzenberg, Eds., John Wiley and Sons: 251-280
  22. Singh, S. M. and G. Ferrier, 1997. Observation of intense sunglint in 3.7${\mu}m$ channel of the AVHRR, International Journal of Remote Sensing, 18: 3521-3533 https://doi.org/10.1080/014311697216775
  23. Soufflet, v., D. Tame, A. Royer, and N. T. O'Neill, 1997. Remote sensing of aerosols over boreal forest and late water from AVHRR data, Remote Sensing of Environment, 60: 22-34 https://doi.org/10.1016/S0034-4257(96)00127-7
  24. Torres, O., P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben, 2002. A long-tern record of aerosol optical depth from TOMS observations and comparison to AEROENT measurements, Journal of the Atmospheric Sciences, 59: 398-413 https://doi.org/10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2
  25. von Hoyningen-Huene, W., M. Freitag, and J. B. Burrows, 2003. Retrival of aerosol optical thickness over land surfaces from top-of-atmosphere radiance, Journal of Geophysical Research, 108: doi:10.1029/2001JD002018
  26. Wen, S. and W. I. Rose, 1994. Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5, Journal of Geophysical Research, 99: 5421-5431 https://doi.org/10.1029/93JD03340
  27. Young, A. T., 1980. Revised depolarization corrections for atmospheric extinction, Applied Optics, 19: 3427-3428 https://doi.org/10.1364/AO.19.003427