i XX

6-2-10

A Study on Discrete-Event Modeling of a
Heterogeneous Web Server System

3 o] A (Eui-seok Nahm)D 7o) #(E. G. Kang)? Z&d4(H. S. Chung) 3
o]2%(]. H. Lee)d d5Z(D. C. Hyun)®

Abstract
A heterogeneous webserver such as an HTTP server should be able to currently deal with
numerous users. To the end, it is inevitable to formally analyze web traffics as well as a
webserver itself. In particular, as most systems adopt HTTP 1.1 protocol instead of HTTP
1.0 protocol, it is more difficult to represent the system as a simple analytic mode. In
addition, since most of previous models missed the detailed processes of the server, it is
unsuitable for the current server based on HTTP 1.1 to tune itself with its own system
parameters. On the basis of HTTP 1.1 protocol supporting persistent connections, we thus
present an analytical end-to-end tandem queueing model considering specific hardware

configurations inside the webserver, which ultimately covers from accepting the customer
requests to completing the services.

Keywords :Web server, HTTP protocol, HT'TP traffic, Queueing model

=534 12005 6. 1.
AALERE ¢ 2005. 6. 22.

D A3 : S5Use FEFAESHT
2) 334 : FEUYgL FRFAUIT
3) A4 : FEuEn FRFAUFE
4) A3 : FEUFgn FRFAEE
5) A3 : SEUHSE BRFAIEE

T &

T

306 BEZFEERRERE HEE '2005. 6. Vol 6., No 2.

1. Introduction

Among several protocols provided by a
webserver, the HTTP protocol implemented
through a certain web browser is taking up
most of the web traffics. To characterize
HTTP traffics, numerous studies have
proposed analytical web traffic models
Including session requests, the distributions
of the requested file sizes, transfer times.
However, most previous works missed the
detailed processes in the lower parts of
TCP/IP layer, such as server hardware
platform, network bandwidth, management of
I/O buffers, and file sizes(Z. Liu, R.D. Van
der Mei). Consequently, it seems
unreasonable to evaluate the performance of
the webserver just with such few
parameters as service requests, total service
time, and the number of the processors.
There was an analytical model for the
webserver based on HTTP 1.0 in order to
evaluate the generic performance of a
webserver(P. Barford, 1999). However, since
it does not consider persistent connections,
the model is no longer suitable for current
webservers operating on the HTTP 1.1
protocol.

The presented model utilizes the form of
the tandem queueing model that handles web
requests through® three consecutive
subsystems: TCP subsystem, HTTP
subsystem, and network subsystem. Our
model also takes account of both the specific
hardware and software configurations, while
dealing with the number of the threads, TCP
listen queue sizes, memory sizes, I/O buffer
sizes, and the network bandwidth.

In Section 2, both HTTP traffic analysis
and workload characterizations are described.

In Section 3, a tandem queueing model with
three subsystems for the webserver is
proposed together with performance
evaluation with regard to the parameters
associated with each component. In Section
4, we validate the suggested model through
a certain bench marking test with lab
environments and predict the system
performance while varying the parameters in
terms of discrete event simulations. The
paper concludes with Section 5.

II. Web Traffic Characterization

As depicted in Fig. 1, a user session begins
with making a request for some page in the
web server, which transfers successively all
of the files embedded in the requested page
and ends with expired persistent-connection
time. It can be said that ON time corresponds
to the transfer time and OFF time
corresponds to the time between transfers.
OFF time is composed of active OFF times
and inactive OFF times(Z. Liu, N, 2000).

S ta

<Fig. 1> User session characterization

Inactive OFF time corresponds to the idle
time that users spend on being idle while
watching the browser, and active OFF time
corresponds to the time that the web
browser spends on parsing the web requests,
preparing for establishing a new TCP

A Study on Discrete—Event Modeling of a Heterogeneous Web Server System 307

connection. HTTP 1.1 does not only maintain
persistent connections until inactive OFF
time does not exceed the predetermined
timeout, but also support the pipeline that
the web server transfers successive requests
without waiting for an ACK message for the
transferred file. Through the analysis of
those OFF times, we built a web server
model having several OFF times such as the
thinking time for wusers to think while
watching the browser and the processing
time to prepare for a new TCP connection
and to parse the web requests between
transfers of files by the browser.

1. File size characterization

The service time of the web server is
dominated by the transfer time of the files,
is proportional to the file size. The
distribution of the file sizes in the web
server usually has a heavy-tailed
distribution. This is commonly observed from
the file sizes requested by customers, the
network connection sizes, and the stored file
sizes in the web server. If a random variable
X has a heavy-tailed distribution, its
cumulative distribution function is defined as
PLX > x]=x"* where 0<a<2. Usually,
the body part of the file size distribution has
lognormal distribution, and the tail part has
a Pareto distribution whose probability
density function is ak°x ~©®*D with a
parameter of 0.40<a<0.63(Z. Liu, N, 2000).
A Pareto model is suitable for the file size
between 4KB and 4MB, and has a long-tail
distribution(V. Paxson and S. Floyd, 1995).
Since the random variable that has a
heavy-tailed distribution shows high
variation for normal file size, a few of big
sized files take up the most of the loads in

the web server. On the other hand, the most
of requested file are occupied with small
sized files

2. OFF time characterization

Supposing that the probability density
function to describe file size is F(x), the
expiration time of the persistent connection
is T,, , and the random variable to
describe the active OFF time is Y, the
probability P to close a session resulting
from expiration of the timeout value can be
described as PlY > T,,l, and the mean
OFF time within persistent
connection can be expressed as follows:

of active

HVVT,)= 1 [“Fod

A previous study shows that the active OFF
time has a Weibull distribution like (2), and
the inactive OFF time has a
distribution [1,2].

Pareto

=1 (xy

P(y)= —b—xa,,— e @)

Through the analysis of those OFF times,
we can apply it to web server model several
OFF times, such as thinking time for users
to think while watching the browser and the
processing time to prepare for new TCP
connection and parse the web requests
between transfers of files by browser.

3. Popularity

The relative number of the requests for
the individual file on the server has a potent
influence on the role of a cache. The
distribution of the request number for the
files follows Zipf's Law(Z. Liu, N, 2000). It

308 REAURCEXHERE HXE '2005. 6. Vol 6., No 2.

means that if the files are ordered from
most popular to least popular, the reference
number P for a file is in inverse proportion
to its rank r. As it were, p=4kr"!, where k
is an positive number. This property can be
observed well in spite of the unclear reason
for this phenomenon in the web workload.
Such a distribution of the references between
web files shows that some files are greatly
popular, while most of files have a relatively
rare reference.

4. Temporal locality

Once a file is requested, the file inclines
to be requested again by other users. The
characterization of the temporal locality is
required, because the cache is more effective

when temporal locality exists. To
characterize the temporal locality, the
measurement of the stack distance is

generally used. Assuming that files are
stored in a push-down stack, the stack
distance of the requested file is found when
each request moves the requested file to the
top of the stack and pushes down the other
file. So to speak, short stack distance means
that the requests for the same file are
closely occurred each other. And typical
distribution for request sequence in the web
server is known as the lognormal
distribution, which means significant
temporal locality is often in existence in the
sequence of the request for the web server.

5. HTTP protocol

HTTP protocol occupying most of web
traffics makes a connection through 3-way
handshaking, which consists of sending a
SYN message to the server by client
computer, replying back a SYN-ACK

message from the server, and sending the
ACK message from the client. Thereafter, it
creates a proper data structure corresponding
to service requests by allocating required
system resources with a new port number.
Since HTTP 1.0 releases a connection right
after transferring a requested file, substantial
overheads result from the same procedures
that occurs in the connection establishment.
Note

<Fig. 2> A tandem queueing model on
HTTP 10

that a web file usually refers to image files,
and thus a request for the single web file
renders transferring multiple files from the
web server. We call a web file including all
these files to be transferred 'web object’
accordingly.

Contrary to HTTP 1.0 transferring only
one file at a HTTP 11
diminishes the overhead from connection
establishment while maintaining a persistent
connection even after transferring the
requested file. Additionally, by using the
pipeline that sends the requests on the same
connection without waiting for the
completion of the previous transfer, the
HTTP 11 not only eliminates wastes of
unnecessary resources but also saves
transferring time. It also supports caching
scheme as well as document compression

connection,

A Study on Discrete—Event Modeling of a Heterogeneous Web Server System 309

over link level.

With respect to the service time for the
web service requests, HTTP 1.1 is not
always superior to HTTP 1.0, for example in
overloaded states. In general, HTTP 1.1
shows reduced overheads by making new
connections. In other words, the persistent
connections of HTTP 1.1 need maintaining
fewer connections than those of HTTP 1.0.
As the concurrent connections approach to
the maximum limit connections of HTTP 1.1,
a new request becomes refused. Therefore,
HTTP 1.1 yields performance deterioration in
the response time under the overloaded
conditions. In this aspect of HTML latency
under overload condition, since HTTP 1.0
has lower latency through parallel multiple
connections in spite of both three-way
handshaking and TCP slow start phases for
each file, it excels HTTP 1.1 that inquires
all ACK messages for all embedded objects
in a page on a single connection. When the
performance of the web server is restricted
to file transfer under the overload conditions,
the persistent connections of HTTP 1.1 may
result in degrading Quality of Service rather
than maintaining a connection only during
transferring a single object like HTTP 1.0.
However, the normal condition of workloads
brings HTTP 1.1 to support the persistent
connections to have significantly better
performance

III. Web Server Model

1. Tandem queueing model

Since most web server models dealt just
with both of the request for the file and the
file transfer ignoring essential lower-level
details of HTTP and TCP/IP protocols, it is

insufficient to show the end-to-end
performance for the communications between
the client and the server. On the contrary, the
author of (Z. Liu, N, 2000) evaluated the
performance of the web server by dividing a
web service into TCP connection processing
phase, HTTP transaction processing phase,
and I/O processing phase as shown in Fig. 2.
The author of (R.D. Van der Mei) expanded
this result to the web service model to handle
both static requests and dynamic requests on
the basis of HTTP 1.0. However, since the
work of was based on the HTTP 1.0 that one
web request go through three tandem queues
and then terminate the connection with
resulting in repeatedly making another
request, it was not appropriate for HTTP 1.1
models, guaranteeing persistent connections.
In addition, supposing all transaction requests
entering each subsystem come from the
previous subsystem, both works did not
consider that a blocked transaction returning
to the previous queue(Z. Liu, R.D. Van der
Mei).

The HTTP server model presented in this
paper is described as a tandem queueing
model going through three subsystems. On
the other hand, we consider the situation of
transaction reattempts being serviced in case
of being blocked in the subsystem. And we
observe the system performance according to
the probability that the session is terminated
by a persistent connection supported in
HTTP 1.1. The entire system model can be
analytically described as Jackson network
with such three subsystems as TCP
subsystem, HTTP subsystem, NETWORK
subsystem, which are shown in Fig. 3.

310 BRZECIEELRFRE M "2005. 6. Vol 6., No 2.

<Fig. 3> A tandem queueing model on
HTTP 1.1

Note that the net arrival process is
composed of isolated external arrivals
followed by a burst of feedback arrivals
blocked due to being full of listen queues or
being busy requested resources. We can use
Jackson’s theorem that the number of
transactions in the queues at time t is
independent random variable. In addition, if
the vector of the number of transactions in
all the queues, N(t)= (N1(t),N2(t)N3(t)), is a
Markov process, Jackson’s theorem states
that the product of the steady state
probabilities of the individual queues is equal
to the steady state pmf for N(t). Therefore,
it can be said for any possible state
n=(n1,n2,n3) as follows.

P[N(t) = n] = P[N1= nl]P[sz ”z]P[N3= n3]

--------------------------------- &)

where N1 is the random variable for TCP
queue, N2 is for HTTP queue, and N3 is for
NETWORK queue.

Therefore, consider a network of three
queues in which transaction arrive from
outside the network to TCP queue according
to independent Poisson processes of rate a.
We assume that the service time of a
transaction in queue k is exponentially
distributed with the rate 1, and independent

of all other and arrival
processes. We also suppose that Pp and
P be the blocking probabilities of TCP
subsystem and HTTP subsystem, Py, be

service times

the probability of session termination as
persistent connection time expires, and =,

be the probability to retry without leaving
the system. Corresponding equations on each
subsystem can be obtained as follows.

)\1=(JI,P31)X1+(T[,P32)}\3+¢1 (4)
Ag=(1—Pg)A{+ (1= Py A3 - (5)
Ay=(1—Pgr, (6)

2. TCP subsystem

The TCP subsystem corresponds to TCP
listen queues handled by the server daemon.
A TCP connection is established by
well-known three-way handshake
procedures, if there is a slot available at the
TCP listen queue. Otherwise, the server
sends connection refusal message and drops
the request. After establishing the TCP
socket, the server daemon forwards the
requests to the HTTP subsystem and closes
the socket by sending FIN segment when
the transaction is completely serviced.

In the TCP connection processing phase,
the server is able to service the requests as
many as the number of slots in the listen
queue, and drops requests arriving after all
slots are occupied due to no waiting room.
Therefore, as a queueing model, m,, the
number of slots corresponds to the number
of servers and RTT(Round Trip Time)
corresponds to the service time because the
service time corresponds to the time from

A Study on Discrete—Event Modeling of a Heterogeneous Web Server System 311

sending SYN-ACK message by the server
till receiving ACK message from the client.

Hence, this subsystem can be described as a
MIM|m y/m ., queveing model, if RTT has
an exponential distribution with mean of u,
and the size of queue is m ,, and A, the
rate of the request arriving in this
subsystem can be derived from solving the
simultaneous 4)-6). u,; the
service rate, P g the blocking probability of
dropped additional requests after all slots are
occupied, and E[N ,,} the mean transaction

requests in the TCP subsystem can be
obtained as follows.

equations

_ a 1
M=a=pya-ny’ "-rrr @
mm’ K
Pp=—"%% " a=3 ®

M ! ;0—51—
BN l=21 = d ©)
ol T o (1-n)1~ Pp)

3. HTTP subsystem

The HTTP subsystem simply consists of
an HTTP listen queue and several HTTP
threads. A HTTP daemon listens to the
arrival of a transaction request and allocates
a HTTP thread to handle the arrived
request. The thread fetches the file requested
by the transaction from a file system or a
cache and copies it into the memory buffer.
This thread is then released to serve another
transaction. If all of the memory buffers are
busy, the HTTP thread remains idle until
the memory buffer becomes available. In
case several threads wait for an available
buffer, the waiting threads catch the buffer

by a certain allocation rule with the proper
priority. At this time, the utility of the
memory buffer depends on whether or not
the data in the memory buffer can be put
into a network I/O buffer of the network
subsystem. The data in the network I/O
buffer should be held until receiving an ACK
message from the client. Depending on the
network congestion, it is natural that the
availability of the memory buffer is regarded
as a random variable.

In case the HTTP daemon cannot find a
thread available to handle the transaction
request, it should wait in the so-called
HTTP listen queue until any thread becomes
available. If all HTTP listen queues have no
more room to hold arriving transaction
requests, the TCP connections replying to
those transaction requests are cancelled,
which makes clients leave the system or
enter the TCP listen queue repeatedly with
delivering the refusal message to the clients.

Denoting the number of HTTP threads by
m 4, and the size of HTTP listen queue by
Q, this HTTP subsystem can be described
as M/M/m u/(m 4+ Q) . system. The
service time in this subsystem corresponds
to the sum of fetching time for requested
file, copying time into the memory buffer
and the time which it takes for thread to
wait until the memory buffer is available if
all the memory buffers are occupied.

A, the request rate in the HTTP
subsystem can be obtained by getting the
solution from (4)-(6). And, u, the service
rate, P g the probability to be blocked from
HTTP listen queue, E[Ng,,] the average

number of transactions to wait for an HTTP
thread available, and the whole system time

312 BEZREHEXYESRE WX '2005. 6. Vol 6., No 2.

in this HTTP subsystem are as follows;

Ao a
27 (I-1)1 (0= Pu)(1—Pg)}

——————— an
g™ [li a™»(]1—p @t1)‘1
Po= 1 (& 0 Ty (1)

--=- (13)
EN, wl | 1
=t q htip. , 1
——————————————— (14)
A
h =—2p=
where « p Mooy

4, Network Subsystem

In the Network subsystem, files in the
memory buffers are splitted into
MSS(Maximum Segment Size) blocks which
are the transmission units for TCP/IP based
network. A file stored in the memory buffer
is splitted into MSS blocks and put into
network output buffer to transmit by
network controller. When each block is sent
to the client through the network, the client
reads the block through network card and

sends ACK message. Supposing that F is
the size of the file, and B,, is the size of
the output buffer in the network subsystem,
k the number of MSS blocks splitted from a
file can be given by

As the data on the output buffer should
be held on the output buffer before getting
ACK message from client owing to
connection oriented property of TCP, we
can see that T ,;po the waiting time to
use available memory buffer in the HTTP
subsystem relies on the network congestion
condition,

Thus, overall system time in the Network
subsystem corresponds to the sum of
T yumison the time to split the file on the
memory into MSS blocks, T, the time to
put those blocks into output buffer, T ...,
the transfer time from the server to the
client, T ., the time to read the block
through network card, and T 4o the time to
take to receive ACK message from the
client.

Assuming that the file is splitted into k
blocks, since all the time except T ,umsion
need the more time to be multiplied by Kk,
Ay request rate in Network subsystem and
15 the service rate can be obtained as
follows.

(16)

A Study on Discrete—Event Modeling of a Heterogeneous Web Server System 313

an

When the network controller sends the
data on the memory buffer to the output
buffer, controller makes it possible for
infinite corresponding transactions to wait
until the output buffer is available in case
where no output buffer is available. The
network controller can send to network only
one data out of m,, output buffers at a
time, and hold the output buffers as many
as m,, Therefore, the network subsystem

can be described as M/M/1/m ,,. In steady

state, denoting the % by p, the probability

with which k transactions are in the
network subsystem is given by

PN=# = l=2k® (4

l_D M ogprs

Considering transactions waiting for an
output buffer available when the transactions
arrive to the network subsystem going
through HTTP E{N,,] the

number of transactions and 7T ,, whole

subsystem,

system time in Network subsystem are as
follows.

EIN,)= STRING)=H] (19)

— E[Nnet] — p
A3 (1—p)A;

(gt p
(l_pm”ﬂ)hfg

IV. Simulation for Result Validation

For the purpose of accessing the validity of
the model presented in this paper, we compare
the both web server performances evaluated
by the discrete event simulation and the WEB
BENCH 4.1(http://www.etestinglabs.com.),
benchmarking in the LAN environment of test
lab. All the parameters used in the simulation
are configurated similar to what are based on
the values used by the real web server

First, as shown 1in Figd, the test
environment is composed of one controller
responsible for load
monitoring, one web

generating and
server, and &
client-computers connected via Fast

Ethernet(100Mbps).

<Fig. 4> Test environment configuration

The controller computer generates the load
by making client-computers request the files
stored in the web server and measures the
output bandwidth of the server as the request
rates vary by adjusting the number of the
client-computers. The web server has
Pentium-11300MHz processor, 128M RAM,
10Mbps Lan card, and operating system of
Linux kemnel 242 and operates the web
server application of Apache with version
1.3.19.

314 BREZEEIEXHESE /X5 '2005. 6. Vol 6., No 2.

<Table 58> Parameters of the web server
model

Parameter| m | Myul Q | Troren| M et B,,e,(

1024‘

Value | 64130 10 i10ms| 60

As shown in Table. 1, m ., is set as 64 by
configuring the value of baacklog on Linux,
and 1 ; is set by measuring RTT in the test
lab. T 4 the time which it takes for an

HTTP thread to fetch the requested file from
the disk can be considered as the average of
approximate 10ms, because most of disk
access time is seeking time if 5400RPM hard
disk processes about 100 random I/O job per
second. In addition, supposing that the file
size has an exponential distribution with mean
of 7KB and hard disk has the transmission
rate of 10MB/sec, T .. 5o the time to write
the data into the memory buffer for a file can
be ignored since it is just 0.7us. As we
assume that the average file size on the web
server is TKByte, both T ,,; the time to put a
file into output buffer and T p,44,, the time to
partition is so small as they can be
approximated as O(Patreick Killelea, 1998).

In network subsystem, we can see that the
web server transfers files to client-computer
at the bandwidth of about 900Kbps by
measurement. Since we assumed the file size
has an exponential distribution with mean of 7
KByte, it can be said that transferring time to
client has an exponential distribution with
mean of 60ms. Besides, RTT, the time that it
takes for client to read the received packet
and send ACK, is also so small compared
with transferring time as it can be neglected.

Therefore, we performed the simulation

assuming that total service time in Network
subsystem has an exponential distribution
with mean of 60ms. For the purpose of
visually expressing the performance of the
web server, we define the performance of the
web server as total system
transaction give by

time per

T gom = —1117 + Tyt T e (21)

where T4 and T,, can be obtained by
(14) and (20)

The throughput and response time of the
web server via both WEB BENCH 4.1 and
simulation are shown in Fig. 5.

<Fig. 5> Validation of test result with
simulation

Among several parameters, HTTP 1.1
heavily depends on the timeout probability
P oo TESUlLIng from that inactive OFF time
exceeds persistent connection time before the
session completes, the retry probability =, to
try to make connection for downloading the
page when the session terminates. Thus, in

order to validate the presented model, we
had to

according to the system characteristic, which
heavily relies on the both configured
persistent connection time and content of

apply various P, and =,

A Study on Discrete—Event Modeling of a Heterogeneous Web Server System 315

whether it is web
commercial site to, or common homepage.
As a result of simulation, we could have
similar simulation result to WEB BENCH on
n,=0.15 and Pgp.pn=0.3

We have changed the number of HTTP
thread and the size of HTTP listen queue in
order to observe the system performance
variety according to system parameters. At
first, the total system time variety between
the number of HTTP thread and the size of
HTTP listen queue is constant not related to
each other as shown in Fig. 6.

web server, e.g.

<Fig. 6> HTTP thread vs HTTP buffer

And, the total system time variety
between the size of TCP listen queue and
the number of HTTP thread is shown as in
Fig. 7. When

system does not show good performance
owing to large system time. And as
My | m,, increases, the performance is

Mygy | My, is small, the

enhanced due to decrease of system time.
But we can see almost constant system time
if My, /| m,, exceeds 0.1.

<Fig. 7> TCP listen queue vs HTTP listen
queue

Therefore, the web server is able to
maintain settled performance if it has more

than 109 of the size of TCP listen queue,

can not improve the performance in spite of
increasing the number of HTTP thread
This phenomenon results from that T .. 50

the time to get memory buffer available
depends on the network congestion. The
reason is that the data in the network IO
buffer should be held after transfer till
receiving an ACK message from client.

V. Conclusion

In this paper, we present the web service
as a tandem queueing model consisting of
TCP, HTTP, and Network sub systems, and
analytically describe the specific processes
occurred to each subsystem through
queueing theory. This model is validated by
both benchmarking in test LAN environment
via WEB BENCH 4.1 and discrete event
simulation whose parameters are based on
similar environment of test lab. In addition,
we could find some conditions to support

316 REBFEHERNTRE MW 2005, 6. Vol 6., No 2.

optimized web service by changing system
parameters to affect the performance of each
subsystem. Since this model is based on

HTTP 1.1, because P, the probability to
be timeout and =, the probability to retry
undergo potent influence according to
configuration of persistent connection timeout
in the web server application such as
Apache, therefore, the performance analysis
for the configuration should precede the
performance evaluation of web server.

It is as follows what we should more
consider to generalize and make up for the
presented web server model. First, the web
traffic does not have Poisson distribution(V.

Paxson and S. Floyd, 1995). Second, the

distribution of requested file size has not -

exponential distribution but heavy-tailed
distribution. Third, the distribution of service
fime on each subsystem has not exponential
distribution but general distribution. Forth,
the cache has an influence on the
performance of web server. According to
those effects, this model has a room for
expansion.

Reference

{11 Z. Liy, N. Niclause, C. Villaneva, "Traffic
model and Performance Evaluation of web
servers,” Performance Evaluation vol. 46,
pp 77-100, 2000

[2] P. Barford, M.E. Crovella, "A Performance
Evaluation of Hyper Text Transfer
protocols,” proceedings of the ACM
Sigmetrics’99, 1999

[3]1 RD. Van der Mei, R. Hariharan, P.K.
Reeser, "Web Server Performance
Modeling,"Proceedings of 4th Informs
Telecom Conference, Special Issue of

Telecommunication.

{4

(5]

Alberto Leon-Garcia, "Probability and
Random Processes for Electrical
Engineering,"second edition, Addison
Wesley. Patreick Killelea, "Web

Performance Tuning ,” O'Reilly, 1998
http://www.etestinglabs.com.

V. Paxson and S. Floyd, "Wide-Area
Traffic : The Failure of Poisson Modeling,
"IEEE / ACM Transactions on
Networking, vol. 3, no. 3, pp. 226 244,
June 1995,

