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Abstract

This paper presents the problem of exhaustive test generation for detection of coupling
faults between cells in word-oriented memories. According to this fault model, contents of any
w-bit memory word in a memory with n words, or ability tochange this contents, is influenced
by the contents of any other s-1 words in the memory. A near optimal iterative method for

construction of test patterns is proposed. The systematic structure of the proposed test results
in simple BIST implementations.
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1.Introduction

In this paper the problem of test generation
for word- oriented memories is considered.
Most of the existing test generation methods
are developed for bit-oriented memories. In
the case when each cell can be in more than
2 states, the number of faults increases, so
new methods for test generation are needed.
There are several approaches to the problem
of testing of word-oriented memories
[49,13]. One of the most attractive solutions
for the test cost reduction problem is based
on built-in self-test (BIST)[15].

We assume that there are n memory cells,
each of them can be in g different states,
and s-coupling fault model is used. A set
of s cells is said to be s-coupled when a
Write operation in one cell produces a
change in the contents of another cell,
subject to a particular data pattern in the
remaining s-2 cells, which may be anywhere
in the memory [1]. This model includes most
classical fault models for word-oriented
memories. Typically q=2w, (w is the number
of bits in the memory word) in practice
cases w=2, w=4 and w=16 are most common.

This fault model applies especially to
DRAMs, where in addition to the traditional
faults for SRAM chips [7,8], neighborhood
pattern sensitive faults ('NPSFs’) [1llhave
to be considered. Several tests for NPSFs
detection were proposed in [11]. Their main
restriction is that the physical topology of
the cells in the memory cell array has to be
known. In practice, it is usually
not the case. Also, most of the existing
methods are oriented for fault detection in
bit-oriented memories.

The word-oriented memory test algorithms

can be constructed, using the backgrounds,
by replicating the single-bit memory test
algorithm  (log2w+1) times [12]. This
approach (with some modification [13])
allows to detect the Z2-coupling faults only
and does not guarantee the detection of the
k-couplings as well as pattern sensitive
faults [4].

Pseudo-random memory tests [1,3,10,14] do
not require knowledge of the physical
topology of the memory cell array and can
be applied to word-oriented memories;
however, they have the disadvantage that
their fault coverage is probabilistic.

In this paper a unified approach for
word-oriented memory BIST is proposed.
This approach is based on the results for
bit-oriented memories (g=2), which were
presented in [1,4). In [4], some of these
results were generalized for word-oriented
DRAMs with small numbers of cells.

This paper is organized in a following
way;

In Section 2 the general mathematical
model of s-surjective matrices for test
generation is proposed. Matrix Agq(n,s) with
elements from  {0,1,g-1} is  called
s-surjective ((n,s) exhaustive), if in each s
columns all g5 g-ary s-tuples can be found
as rows.

In section 3 we discuss the problem of
building s-surjective g-ary matrices Ag(n,s)
with minimal numbers of rows. A general
method for construction of near-optimal
s-surjective matrices is developed. It is
basedon an iterative procedure and small
s-surjective matrices, called seeds. The
problem of construction of optimal seeds is
solved, upperbounds on minimal numbers of
rows in

s-surjective  matrices and



estimations on test times are presented.
Also, special cases q=4 and g=16 are
analyzed(they are important from the
practical point of view).

In Section 4 the hardware realization of
the memory BIST based on the proposed

approach is considered and required
overheads are estimated.
2.Mathematicalmodel

Definition 1. Matrix Ag(ns) with n

columns and elements from {0,g-1} is called
s-surjective ((n,s)-exhaustivel[1,2]), if in each
s-tuple of columns all gs g-ary possible
s-tuples can be found as rows.

To detect and locate all possible unlinked
s-coupling faults in n cells, it 1is
necessary(but may not be sufficient) to
generate all possible gs combinations for
every s cells, thus g-ary test matrix Ag(n,s)
with n columns must be s-surjective [1].
(Rows of Ag(n,s) are test patterns.)

To provide for test generation for
transition faults, the concept of
surjectivity can be used.

strong

Definition2. Matrix Ag(n,s) with elements
a(ij) is called strongly s-surjective, if
Aq(n,s) is s-surjective and for any xI, x2,,xs
{0,,g-1} and any s-1 tuple of columns
{j1,js-1} there exists a row { such that
a(ijl) = xl,a(ijs-1)=xs-1 and a(i+1,jI)=xs.

At the testing stage a MARCH test is
used each row is considered as a test
background and is loaded to the memory
using the MARCH procedure [1,2,4,7]. After
loading a background, the state of all
memory cells is checked.
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To generate a minimal test, we need to
construct a strongly s-surjective g-ary
matrix with n columns and minimal number
of rows. This number is represented by
function fg(n,s).

Since each row (background) of a test
matrix corresponds to n Read and n Write
operations, the resulting test length (number
of Read and Write instructions) can be
estimated as 2nfg(n,s)

An obvious low bound on fg(n,s) is given
by the following statement:

Statementl. If ns, then fg(n,s)gs.

The proposed methods can be used for
both  transparent and  non-transparent
memory testing. For transparent testing the
state of all memory cells must be restored
after the test (at least, at the absence of
faults). It means, that the i-th background is
loaded as the modulo-two sum of the
present background (or initial memory state)
and the i-th row of the test matrix Aq(n,s).
To provide the restoring of the initial
memory state in the absence of faults, the
number of ones in each column of test
matrix should be even.

We will describe below an
method for construction of
s-surjective  matrices,

iterative
strongly
which aims to
minimize the number fg{n,s) of rows in these
matrices for given n,q,s. This method is
based on the method for construction of
s-surjective matrices for the binary case
suggested in [1].

We note that even for the binary case
(q=2) the problem of construction of
s-surjective (but not necrssary strongly
s-surjective) matrices with minimal numvers
of rows is still open. Some results in this
direction can be found in [1,5].
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3.Constructionofnon-binary
strongly s—surjectivematrices

3.1 Iterative construction of surjective
matrices

If we have a strongly s-surjective matrix
Aqg(b,s) with fg(b,s) rows and b columns,
we can expand it using a special matrix
Mb(n,s) with n columns. Elements of
Mb(n,s) should be integers from {0,b-1).
The following condition must be
satisfied: for each s columns there exist
a row in Mb(ns) with all different
elements in the selected columns (we
assume b s). An example of matrix
M5(104) for s=4, n=10 and b=5 is given
below.

We can construct a strongly s-surjective
matrix Ag(n,s) with n columns from matrix
Mb(n,s) in the following way: instead of
every element i in Mb(n,s) we substitute the
i~th column of Aq(b,s). The resulting matrix
will be strongly s-surjective and have fg(b,s)
mb(n,s) where mb(ns) is the
number of rows in Mb(n,s).

Thus we have the following result

Statement 2. For any s<b fglnhs)<
fa(b,s)mb(n,s).

We note also that by deleting columns in
strongly s-surjective matrix Agq(b,s) we can
obtain seeds with numbers of columns less
than b.

Let us suppose that elements of raw i of
matrix Mb(n,s) are upperbounded by ti.

columns,

Then we can use for substitution of
elements in the i-th row of Mb(ns) seed
matrices with ¢i columns.

Statement 3. If matrix Mb(n,s)=(m(ij))
and

max m{ij)=ti, then fq(n,s)fq(ti,s)

In view of Statement 3, the procedure for
construction of strongly s-surjective matrices
can be divided into two parts - construction
of good seeds and construction of matrices
Mb(n,s) with small numbers mb(ns) of
TOwS.

3.2Constructionofseedmatrices

It has been shown in [4] that we can
construct optimal strongly s-surjective
matrices Ag(g+l,s) with gs+1 rows. (For s=3
and ¢=2w s-surjective matrices Agq(g+2,s)
with gs+l rows can be constructed.) These
matrices are based on extended
Reed-Solomon codes over GF(g) [6]. The
extended (g+1,g+1-s,s+1) Reed-Solomon code
over GF(q) is defined by the check matrix:

Here is a primitive element of GF(q) (i=]j
for i=j € 0,1,..,q-2) [6].

It was shown in [4] that if all gs linear
combinations of rows of II ordered in a
special way are selected as a rows of matrix
A then A = Aqlgtls) is a strongly
s-surjective matrix with gs+1 rows. (The
second row is repeated at the end.) The
main idea consists in using another primitive
polynomial over GF(gs) to order the rows of
Aq(g+l,s).

For example, let us consider g=2w=4, s=2
and construct strongly 2-surjective matrix



A4(52). Then GF(22)={0,1,2}, where 1is a
root of polynomial (x)=x2+x+1 (3=1). The
operations of addition and multiplication in
the field GF(22) are described by the
following table

Addition
1 a

Multiplication
1 a
0
1
a
a® | a? 1 a®
where 0=00, 1=10,=01 and 2=11.

For the construction of the optimal
2-pseudoexhaustive backgrounds over GF(22)

we use the following check matrix:

o
~

[=]
o]
L)

nlo
NOQ

)
ey o )

a

alol-jo
o|o
QN

o|lojo|ol|o

ala,
o

ofl—~|n

—-|a

o

To order the resultingbackgrounds, primitive
polynomial in GF(42) should be considered,
such as (x)=x2+x+. Let ()=0, GF(42). If
i=(v1@), v2(i)), where v1(i), v2(i)GF(22), then
i-th row of A4(52) can be obtained as
(w1(Hw2()) H.

The rows of the resulting seed matrix
A4(5,2) with 17 rows are given in Table 1.

For the matrix A4(5,2) in any two
columns all 16 pairs (x1x2) (x1x2GF(22))
can be found as row and in each column all
16 pairs {(x1, x2) can be found in two
consecutive rows.

Table 1. construction of
2-surjective matrix A4(5,2)

strongly

il vi(i) v2(i) i-th row of 44(5,2)
0 0 0 00000
1 1 0 10111
2 0 1 011 2
3 1 1201
4 2 2120
5 1 1 1102
6 0 0
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7 0 0 21
8 2 2 10
9 2 1 21 10
10 012
1] 2 0 20222
12] O 2 0221
13| 1 2 12 02
14 1 i 2 0
15 2 2 220 1
16| 1 0 10111

The elements of this matrix can be easily
generated using an embedded BIST test
generator, based on 2 LFSR's [4] (see
Section 4)

The resulting test can be constructed by
combining the generated backgrounds with
the MARCH test (MATS+), as illustrated in
Table 2 for n=5, w=2 [4]. Here a0,a4 are the
initial states of the «cells W1,W4
Read/Write operations to cell Wj are
denoted as r(Wj) and w(Wj). Each 5 clock
cycles next test background (printed in bold
in Table 2) in generated.

Table 2.Construction of MARCH test to
detect all 2-c ouplings
memory for n=5, w=2.

in word-oriented

t W) w(W) WO |[W1T W2 W3 |W4
0 a0 |al|a2|a3| a4
1 w(W0) | 0 |al (a2 | a3 | a4
2 wWi1) | 0 | 0 |a2 | a3 | a4
3 ww2) | 0| 0| 0 |a3]|a4
4 wiwWd)| 010 0| 0 |ad
5 wiwa) |0l ololo]o
61 AW4) | w(W4) | 0|00 01
7| AwW3) | mwa)| oo o |1 |1
8| AW2) | wiW2)| 0|0 |11 1
9| AW [wwn) | o o |1 ] 1|1
10 AWO) | wAWO0) | 1| O | 1 1 1
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1] AWO) [wWO) [ 0[O [T [ 11
120 AWt [wwd) o | 1|11 ]1
130 Aw2) | ww2) [ 0 [ 1 |11 |1
14| AW3) | mw3) | 0 ] 1 | 1 1
15| AW4) | wiwa) | 0 | 1 | 1 2
81| AWO) [WWO) | 1 [ 2 [ 0 T
82| AWT) | mwi)| 1|00 1
83| AwW2) [ww2)| 1|01 1
84| AW3) | wW3) | 1 | 0] 1|11
85 AW4) | wiwd) | 1 0] 1]1]1
86| AWA4) NERERERE
87| AW3) 1o 1]1]1
88| AW2) 1o 111
89| AW1) 1lol1]1]1
90| AWO) Ao 1] 1]1

3.3 Construction of matrices Mb(n,s)

For s=1, matrices Mb(n,s) contain only one
row, since we can use the same column to
construct surjective matrix. Thus

and fq(nl)=q

Now, let us consider the case s=2. In this
case it is necessary and sufficient that all
columns of Mb(n,s) should be different. So,
we can simply write numbers O,n-1 in the
(gt1)~ary system as the
Mg+1(ns).

For example, let us assume that we have
a strongly 2-surjective seed matrix A4(52)
with 5 columns and 42+1=17 rows (as it
was constructed in the previous Section). We
can use the following matrix M5(25,2) with
25 columns:

columns of

After substitution, the resulting test matrix

A4(25,2) will have 33 rows:

In the general case, using this approach
we receive the following formula for the
number if rows in the resulting strong
2-surjective matrices:

Statement4. fq(n2) ¢2logg+in+1

For example f16(106,2)=1,281 for ¢=16

For s>2, procedures for construction of
matrices Mb(n,s) are more complex. Several
different procedures used. For
combine shift and
concatenation operation, as it is shown by
the following example (s=3, b=6):

can be
example, Wwe can

Using this approach we can construct
matrices Mb(n,s) with (n-2)/(b-2) rows.

Anctherprocedure, which will be used in
this paper, was roposed in [11. The main
idea of this construction is the following: for
each iteration r mutually prime numbers pl,,
pr are selected and matrix Mb(ns) is
constructed, where mij = i mod pj G{1,r)).

An example of matrix M5(8,3) constructed
in such a way, is given below:

Here the seed matrix had 5 columns and
the resulting matrix A4(8,3) 8 columns.

The following result was proven in [1]
and can be generalized to any gq.

Statement5. Let M=(mij) and mij=i (mod
pj) and there exist strongly s-surjective
matrices Aq(pj,s) with fq(pj,s) rows. If pl,pr

are mutually prime such that

n then there exists a strongly



s-surjective matrix Ag(n,s) with fq(n,s) with
fa(n,s)=fq(pj,s) rows.

For example, for s=3, b=18 and r=4 we
can select numbers 13,15,16,17. By statement
5, matrix Mi8(n,3) with n=(13151617)1/3=38
columns and 4 rows can be constructed.

Numbers of rows in matrices Mb(n,s) can
be further decreased using the following
statement:

Statement 6. For mutually prime numbers
pl,pr, pIlpZprb, matrix Mb(n,s) with r rows
and n = pIpZpk, columns can be constructed,
where k=2r/(s(s-1)).

Using this statement for the example
above will result in n = 195 so we can
construct matrix MI8(1953) with 195
columns and 4 rows.

For large n several iterations will be used,
with different seed matrices at every
iteration. For example, for s=3 and g=16 we
can matrices MI18(72,3) with 3 rows and
M18(195,3) with 4 rows construct using the
seed matrix A16(18,3). Resulting 3-surjective
(72 (3163+1)) and (195(4163+1)) matrices can
be combined using mutually prime numbers
71,191,193,195 to construct strongly
3-surjective  matrix with = 71191=13561
columns and (3+43)163+1=61,441 rows. As a
rule, at each subsequent iteration more
number should be used, and the increase in
the number of columns is exponential. To
find an optimum solution a computer search
can be needed.

The last remark is that sometimes it is
better to select non-mutually prime numbers.
For example, instead of selecting 7,11,13,15,16
(g=16, s=3) it is better to
11,13,14,15,16.

select

3.4AExampleandexperimentalresults

(V]
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n

To illustrate the proposed method, let us
consider two important cases g=4 and g=16.

For g=4 s-couplings with s=3 and s=4 can
be detected in practice for large n. In the
first case seed matrix A4(6,3) with 43+1=65
rows is used. Using matrix M6(14,3) (see
above), we receive strongly 3-surjective
matrix A4(16,3) with 343+1 = 193 rows. For
the next iteration mutually prime numbers
pl1=9, p2=11, p3=13, p4=14 can be used. Then
we obtain matrix M14(117,3) with 4 rows.
One more iteration, using 7 mutually prime
numbers allows to generate the test matrix

for testing 1-Mbit memory with
34764+15.4%103 TOWS. Thus
f4(2.5%105,3)5.4103.

In a similar way strongly 4-surjective
matrices are constructed, based on seed
matrix A4(54) with 44=256 rows

Now we consider another practical
example with ¢=16, s=3, n=106. (4-Mbit
memory) Seed matrix Al16(183) with
163=4096 rows can be used in this case.
Taking pl=13, p2=15 p3=16, p4=17 we
receive matrix M18(1953) with 4 rows.
Using 7 mutually prime numbers at the
second step, we receive matrix M143(106,3)
with 7 rows. So, the resulting 3-surjective
matrix will have 106 columns and 474096
115105 rows. Assuming that each cell
Read/Writeoperation will take 50 ns,
resulting test time will be t(4-Mbit, 16, 3)
1.15104 sec 3 hours (see Table 3). This
result is better than one achieved by the
existing methods. Some other results for
1-Mbit word-oriented memory are the
following: #4(5105,2) 12 sec, t16(2.5105,2)2

" min, t4(5105,3)10min, £16(2.5105,3)50 min.

Table 3. Mutuak prime numbers selection
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for construction of M18(n,3)(1=16, s=3)

Number | Number of R Number
. |Mutually prime X
Number of columns in of rows in
. . numbers
of cell n | iteration a seed M
. selected
s matrix m18(n,3)
72 1 18 11,17,18 3
195 1 18 13,15,16,17 |4
11,13,14,
330 1 18
15,16
191,193,
3.6104 |2 195 16
194,195
181,188,
7106 |2 195 187,191, 28
193,194,195

More result on application of the proposed
methods are given at Tables 4, 5 and 6. In
Table 4 numbers of rows in matrices
Mb(n,s) are given, where b=g+1 for s=2 and
s=4 and b=g+2 for s=3. In Table 5 numbers
of test backgrounds, and in Table 6 resulting
test times for 1Mbit memory are given.
Also, in Table 6 results for the bit-oriented
memories are presented [1]. Access time is
assumed to be 510-8 sec.

Table 4. Numbers of rows mb(n,s) for a
1Mbit memory

ws 2 4 8
1 1 1 1
2 12 5 3
3 84 21 4
4 3,920 196 7

Table5. Numbers of test backgrounds for
1Mbit memory

Ws 2 4 8
1 4 16 256
2 193 1,281 196,609
3 5,377 86,017 1.17108

[ 4 ] 1.00106 | 1.28107 [ 5.21010
Table6. Test times for 1Mbit memory

v 1 2 4 8

]

1 | 0.2sec. | 0.2 sec 0.4 sec 3.2 sec
2 | 0.4sec | 8.6 sec 32 sec 40 min
3 | 8.2sec | 4.5 min 36 min 405 hours
4 { 55 sec 13.8 h. | 89 hours 1.8105 h.

We note that numbers of rows in matrices
Mb(n,s) can be further reduced, if we allow
that the fraction of s-tuples of columns such
that the probability that there exists a row
with all different elements in the selected
columns is at least 1- for small 0 (in the
previous sections we assumed 0),

Statement 7. Let M=(mij), where
mij=ilmod pi), pl,prare mutually prime
numbers, splp2pr, and

Then we have for the probability a(pl,pr,
s) that for a randomly selected s-tuple of
columns there exists a row with all different
entries in these columns:

For example, if s=4, ¢=16, pl=13, p2=15,
p3=16,p4=17 then 0.002.

4 Hardwarerealization

The hardware overhead needed to realize
the proposed test procedure for built-in self
testing consists of hardware required for
generation of elements of seed matrix
Aq(bs) (2 LFSRs, see Figl and 2), a
hardware to generate elements of Mb(n,s), a
hardware to generate elements of Mb(n,s), a
comparator and a control unit.

An example of the network generating
rows of 2-surjective seed matrix Aq(gt+1,3)
with g+l columns is given by Fig.l. It is



assumed that the initial memory state is "all
zeros” [4].

The given network contain two LFSRs.
First LFSR(LFSR-) is implementing the
primitive polynomial (x)=x2+x+ (on GF(4))
and is used to order the backgrounds and
consists of 4 flip-flops, second (LFSR-)
generates This LFSR if implementing
polynomial (x)=x2+x+1 and it consists of 2
flip-flops. The realization of these LFSRs is
shown in Fig.2.

The clock pulse input CO is used for
loading initial LFSR- state (v0(:), v1(i))=(1,0)
Clock pulses C1 and C2 enable all flip—flops
to make the shift operations (see Fig.l).
LFSR- is the binary w-bit LFSR over
GF(q), which operate as ordinary LFSR
when C3=0 and as register with parallel load
when C3=1. Detailed description of control
unit operation is given at [4].

Fig.l. Network generating rows of seed
matrix A4(5,2)
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Fig.2. Hardware realization of LFSR- and
LFSR- for g=4, s=2.

A hardware implementation of the network
generating rows of seed matrix Aqg(n2)
requires 3w+(w+2)logq+in flip-flops and 12w
gates.

In the general case (s>2) s-1 LFSRs,
corresponding to ,2,s~1 are required, each
with w flip-flops, along with one LFSR-
with ws flip-flops.

To generate elements of matrices Mb(n,s),
it is needed to store all prime numbers pi,
used for the row generation.

We note that all used matrices Mb(n,s)
have the following properties:

1) m(1,) = 0;
2) m@i+1,)) {0,m(if),m(ij)+1}.
These properties can be used to generate the
resulting test.

The total hardware overhead to detect 2-
and 3- couplings is about 3% in terms of
gates and 5% in terms of the area for a
1-Mbit DRAM. This system was
implemented in hardware for g=2 and results
confirm the estimations [1].

5.Conclusions
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In this paper we develop an efficient
approach for detection and
unlinked  couplings between <cells in
word-oriented memories. The proposed
approach is a generalization of the approach
suggested in{l] for the binary case. The
proposed method requires 36 min for
detection of 100% of 3-couplings between
words for 1Mbit DRAM with 4 bits in each
word and 50 ns access time. The required
overhead for BIST implementation is less
than 5%. Test time can be drastically
reduced, if a small percentage of faults will
be not detected

location of
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