Tungtungmadic Acid, a Novel Antioxidant, from Salicornia her-bacea

  • Chung Young-Chul (Division of Food Science, Chinju International University) ;
  • Chun Hyo-Kon (Korea Research Institute of Bioscience and Biotechnology) ;
  • Yang Jae-Young (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim Ji-Young (Department of Pharmacy, College of Pharmacy, and Research Center for Proteineous Materials, Chosun University) ;
  • Han Eun-Hee (Department of Pharmacy, College of Pharmacy, and Research Center for Proteineous Materials, Chosun University) ;
  • Kho Yung-Hee (Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeong Hye-Gwang (Department of Pharmacy, College of Pharmacy, and Research Center for Proteineous Materials, Chosun University)
  • Published : 2005.10.01

Abstract

Tungtungmadic acid (3-caffeoyl-4-dihydrocaffeoyl quinic acid) is a new chlorogenic acid derivative that was isolated from the Salicomia herbacea. The structure of tungtungmadic acid was determined using chemical and spectral analysis. The antioxidant activity of tungtungmadic acid was evaluated using various antioxidant assays, including free radical scavenging, lipid peroxidation and hydroxyl radical-induced DNA strand breaks assays. Tungtungmadic acid ($IC_{50}\;=\;5.1\;{\mu}M\;and\;9.3\;{\mu}M$) was found to have higher antioxidant activity in the DPPH scavenging assay as well as in the iron-induced liver microsomal lipid peroxidation system. In addition, the tungtungmadic acid was also effective in protecting the plasmid DNA against strand breakage induced by hydroxyl radicals.

Keywords

References

  1. Cai, L., Tsiapalis, G., and Cherian, M. G., Protective role of zinc-metallothionein on DNA damage in vitro by ferric nitrilotriacetate (Fe-NTA) and ferric salts. Chem. Biol. Interact., 115, 141-151 (1998) https://doi.org/10.1016/S0009-2797(98)00069-6
  2. Chen, Y., Wong, M., Rosen, R. T., and Ho, C.-T., 2,2-Diphenyl-1-picrylhydrazyl radical scavenging active components from Polygonum multiflorum Thunb. J. Agric. Food Chem., 47, 2226-2228 (1999) https://doi.org/10.1021/jf990092f
  3. Daglia, M., Racchi, M., Papetti, A., Lanni, C., Govoni, S., and Gazzani, G., In vitro and ex vivo anti hydroxyl radical activity of green and roasted coffee. J. Agric. Food Chem., 52, 1700-1704 (2004) https://doi.org/10.1021/jf030298n
  4. Giinther, T., Vormann, J., and Hollriegl, V., Effects of magnesium and iron on lipid peroxidation in cultured hepatocytes. Mol. Cell Biochem., 144, 141-145 (1995) https://doi.org/10.1007/BF00944393
  5. Im, S.-A., Kim, G.-W., and Lee, C.-K., Immunomodulatory activity of Salicomia herbacea L. components. Nat. Prod. Sci., 9, 273-277 (2003)
  6. Jung, H.A., Park, J. C., Chung, H. Y., Kim, J., and Choi, J. S., Antioxidant flavonoids and chlorogenic acid from the leaves of Eriobotrya japonica. Arch. Pharm. Res., 22, 213-218 (1999) https://doi.org/10.1007/BF02976549
  7. Kasai, H., Fukada, Z., Yamaizumi, S., Sugie, S., and Mori, H., Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem. Toxicol., 38, 467-471 (2000) https://doi.org/10.1016/S0278-6915(00)00014-4
  8. Kim, C. S. and Song, T. G., Ecological studies on the halophyte communities at western and southern coasts in Korea. Kor. J. Ecol., 6, 167-176 (1993)
  9. Kitts, D. D., Wijewickreme, A. N., and Hu, C., Antioxidanl properties of a North American ginseng extract. Mol. Cell Biochem., 203, 1-10 (2000) https://doi.org/10.1023/A:1007078414639
  10. Lee, Y. S., Lee, H. S., Shin, K. H., Kim, B. -K., and Lee, S. H., Constituents of the Halophyte Salicornia herbacea. Arch. Pharm. Res., 27, 1034-1036 (2004) https://doi.org/10.1007/BF02975427
  11. Meneghini, R., Iron homeostasis, oxidative stress, and DNA damage. Free Radical Biol. Med., 23, 783-792 (1997) https://doi.org/10.1016/S0891-5849(97)00016-6
  12. Nakatani, N., Kayano, S., Kikuzaki, H., Sumino, K., Katagiri, K., and Mitani, T., Identification, quantitative determination, anc anti oxidative activities of chloroqenic acid isomers in prune (Prunus domestica L.). J. Agric. Food Chem., 48, 5512-5516 (2000) https://doi.org/10.1021/jf000422s
  13. Ratty, A. K., Sunamoto, J., and Das, N. P., Interaction of flavonoids with 1,1-diphenyl-2-picrylhydrazyl free radical. liposomal membranes and soyabean lipoxygenase1. Biochem. Pharmacol., 37, 989-995 (1988) https://doi.org/10.1016/0006-2952(88)90499-6
  14. Rekka, E. and Kourounakis, P. N., Effect of hydroxyethy rutenosides and related compounds on lipid peroxidation anc free radical scavenging activity. Some structural aspects. J. Pharm. Pharmacol., 43, 486-491 (1991) https://doi.org/10.1111/j.2042-7158.1991.tb03519.x
  15. Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M. and Pridham, J. B., The relative antioxidant activities of plantderived polyphenolic flavonoids, Free Radical Res., 22 375-383 (1995) https://doi.org/10.3109/10715769509145649
  16. Rice-Evans, C. A., Miller, N. J., and Paganga, G., Antioxidan properties of phenolic acid compounds. Trends Plant Sci., 2, 152-158 (1997) https://doi.org/10.1016/S1360-1385(97)01018-2
  17. Silva, F A. M., Borges, F., Guimaraes, C., Lima, J. L. F. C., Matos, C., and Reis, S., Phenolic: acids and derivatives studies on the relationship among structure, radical activity, and physicochemical parameters. J. Agric. Food Chem., 48, 2122-2126 (2000) https://doi.org/10.1021/jf9913110
  18. Wang, H., Cao, G., and Prior, R. L., Oxygen radical absorbin; capacity of anthrocyanins. J. Agric. Food Chem., 45, 304-309 (1997) https://doi.org/10.1021/jf960421t
  19. Zang, L. Y., Cosma, G., Gardner, H., Castranova, V., and Vallyathan, V., Effect of chlorogenic acid on hydroxyl radical. Mol. Cell Biochem., 247, 205-210 (2003) https://doi.org/10.1023/A:1024103428348