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A DELAY-DIFFERENTIAL EQUATION MODEL
OF HIV INFECTION OF CD4% T-CELLS

XINYU SONG AND SHUHAN CHENG

ABSTRACT. In this paper, we introduce a discrete time to the model
to describe the time between infection of a CD4* T-cells, and the
emission of viral particles on a cellular level. We study the effect
of the time delay on the stability of the endemically infected equi-
librium, criteria are given to ensure that the infected equilibrium is
asymptotically stable for all delay. We also obtain the condition for
existence of an orbitally asymptotically stable periodic solution.

1. Introduction

Mathematical modelling has proven to be valuable in understand-
ing the dynamics of HIV-1 infection. By direct application of models
to data obtained from experiments in which antiretroviral drugs were
given to perturb the dynamical state of infection in HIV-1 infected pa-
tients, minimal estimates of the death rate of productively infected cells,
the rate of viral clearance and the viral production rate have been ob-
tained [1-6]. Those models gave so accurate depiction of the virus load
which are almost consistent with the actual data. The research of math-
ematical models is very helpful for the clinical treatment. Especially, the
models of combination therapy provide very important meaning for the
cure of HIV. However, infection by HIV-1 and HCV has many puzzling
quantitative features. For example, there is an average 10 years between
infection with the virus and the AIDS in adults. The reason for this time
lag remains largely unknown, although it seems tied to changes in the
number of circulating CD4% T cells. The major target of HIV infection
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is a class of lymphocytes, or white blood cells, known as CD4* T cells.
These cells secrete growth and differentiation factors that are required
by other cell populations in the immune system, and hence these cells
are called “helper T cells”. ,

When the CD4™1 T cell count, which is normally around 1000 mm~3,
reaches 200 mm ™2 or below in an HIV-infected patient, then that person
is classified as having AIDS. The reason for fall in the T cell count is
unknown.

Over the past decade, a number of models have been developed to
describe the immune system, its interaction with HIV and HCV, and the
decline in CD4% T cells. These models typically consider the dynamics
of the CD4% and virus populations as well as the effects of drug therapy
(see survey [6] and its references). There are also some models which
include an intracellular delay [7-14]. HIV infects cells that carry the
CD4™ cell surface protein as well as other receptors called coreceptors.
Cells that are susceptible to HIV infection are called target cells. The
major target of HIV infection is CD4™" T cells. After becoming infected,
such cells can produce new HIV virus particles, or virions. Thus, we
introduce a population of uninfected target cells, T, and productively
infected cells, I, the virus concentration, V.

To account for the time between viral entry into a target cell and
the production of new virus particles, models that include delays have
been introduced [7-14]. The first model that included this type of ‘in-
tracellular’ delay was developed by Herz et al.[7] and assumed that cells
became productively infected 7 time units after initial infection. Thus,
the model incorporated a fixed, discrete, delay. While their model was
non-linear in that it incorporated a bilinear term for the rate of target
cell infection by free virus, the authors assumed therapy was 100% ef-
fective and thus set this non-linear term to zero when analyzing drug
perturbation experiments, reducing the problem to a linear one. They
reported that including a delay changed the estimated value of the viral
clearance rate, ¢, but did not change the productively infected T cell loss
rate, 8. Mittler et al.[10] examined a related model but assumed that the
intracellular delay, rather than being discrete, was continuous and varied
according to a gamma distribution. Fitting the model to experimental
data, they obtained new estimates for the viral clearance rate constant,
¢ [13]. As did Herz et al., they assumed the drug to be completely ef-
fective and observed no change in the estimated value for §. Grossman
et al.[9] developed a related non-linear delay model, in which the as-
sumption that a productively infected cell died by a first order process,
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was replaced by introducing a delay in the cell death process. Patrick et
al.[14] extend the development of delay models of HIV-1 infection and
treatment to the general case of combination antiviral therapy that is
less than completely efficacious.

In this paper, we shall investigate the viral models with delay. The
model can be written as the following form:

T=s—dTl+aT(1 —T/Tmax) — BTV
(1.1) I= LTt —71)V(t—71)—61
V= pl — ¢V,

where T is the number of target cells, I is number of infected cells, V
is the viral load of the virions, s represents the rate at which new T’
cells are created from sources within the body, such as the thymus, a is
the maximum proliferation rate of target cells. Tinax is the T population
density at which proliferation shuts off. In model (1.1), d is death rate of
the T cells, $1 = Be™™7, 3 is the infection rate constant, the term e™™7
accounts for cells that are infected at time ¢t but die before becoming
productively infected T time units later. ¢ is the death rate of infective
cells, p is the reproductively rate of the infected cell, and p/d is the total
number of virions produced by a productively infected cell during its
_ lifetime, c¢ is the clearance rate constant of virions.

This paper is organized as follows. In the following three sections,
we always assume that §; = (. In section 2, we obtain the existence
and local stability of boundary and positive equilibria, and determine
conditions for which the system enters a Hopf-type bifurcation. Section
3 gives the global stability of boundary equilibria and permanence of
system. In section 4, we obtain the condition for the existence of the
periodic solution of system. In section 5, we try to interpret our math-
ematical results in terms of their biological implication and formulate
our conclusion. We also point out some future research directions.

2. Equilibria, local stability, and Hopf bifurcation

We begin by presenting certain notations that will be used throughout
this paper. Let C([—7,0], R%) denote the set of continuous functions
mapping [—7,0] into R3. For vectors z and y in R3, the inequality
z < y means that z; < y; holds for all <. For elements ¢ and v in
C([-7,0], R%), the inequality ¢ < ¢ means that ¢;(6) < ¢;(9), 6 €
[—7,0], for all ¢. For biological reason, we always assume that the initial
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data (1, ¢1,¢2) for system (1.1) satisfy (¥, 1, ¢2) € C([—7,0], R3). If
(T'(t),I(t), V(t)) is a solution of system (1.1) through (¢, ¢1,¢2) at t =0
with (0) > 0, $1(0) > 0, ¢2(0) > 0, it is easy to verify (T'(¢),1(t), V(t))
is positive on the maximum existence interval of solution. Such solution
will be called as positive solutions.

We consider the following model with time delay

T=s—dl+aT(1 —T/Tmax) — BTV
(2.1) I=pT@t—-7)\V(t—71)—6I
V=pl—¢cV

The possible non-negative equilibia of system (2.1) are Ey (T,0, 0), Ex(T,
1,V), where

o __Tmax 2 T — cd T 8

T = % [a—d—%—\/(a—d) +4a3/TmaX7 T“pﬂa T<T
- %[s ~dT + a1~ T/Tow)], V = 2l — dT +aT(1 ~ T/ )
Let

=3~

Ry =

It is well-known the importance of the value, Ry, which is called as the
basic reproductive ratio of system (2.1). Thus, the basic reproductive
ratio, Ry determines the dynamical properties of system (2.1) over a
long period of time.

Now, we will begin to analysis the geometric properties of the equi-
libria of system (2.1).

Let E*(T*,I*,V*) be any arbitrary equilibrium. Then the character-
istic equation about E* is given by

a—d—2aT*/Thax — BV* — A 0 —BT*
(2.2) det BV*e > —§—X BT*e™>* | =0.
0 P —c— A

For equilibrium E;(7,0,0), (2.2) reduces to

(2.3) ()\+ Via—d?+ 4as/Tmax) (A2 4+ (c+8)A+ o — BpTe™>) = 0.

When 7 =0, El(T, 0,0) is asymptotically stable for Ry < 1, is a saddle
with dimW*(FE;) = 2, dimW*%(E;) = 1 for Ry > 1. We also obtain: If
Ry < 1, for any time delay 7, E; (T,0,0) is asymptotically stable; If
Ry > 1, Ey (T,0,0) is unstable.
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- For equilibrium Es (T,1,V), (2.2) reduces to
(2.4) A3 A oA + b3e ™ 4 byre™ N + b5 = 0,

where B B
by =d—a+2aT/Tmax + BV + ¢+ 9,

by = b + (¢ + 0)(d — a+ 2aT /Tmax + BV),

bs = pB*TV — pBT(d — a + 2aT /Tiax + BV),

by = —pfT,

bs = c6(d — a + 2aT /Trax + BV).
When 7 = 0, (2.4) become as

N b A2 £ oA+ b3 =0,
where by = (¢ + 8)(d — a + 2aT /Timax + BV), b3 = pB2TV. At steady
state, B ~ B o
s—=dT +aT(1 —T/Twax) — BTV =0,
then B B B B
d—a+2aT /Tnax + BV = s/T + aT /Tmax > 0.
Hence, b; > 0,b2 > 0,b3 > 0,
biby — b3 = (¢4 6)(s/T + aT /Tynax)(8/T + aT /Tinax + ¢ + 8)
—pBTV.
If 7 = 0, by Routh-Hurwitz Criterion, we have the following theorem.
THEOREM 2.1. If7 =0, Ry > 1 and
(2.5) (¢4 0)(s/T + aT /Tmax)(s/T + aT | Tmax + ¢ + 8) > pB*TV,
then the positive equilibrium Eo(T,I,V) is asymptotically stable.
For the parameters
- d=0.01, § =05, c=10, a = 6.8,
Tmax = 1300, s =5, = 0.0002, p = 1000,

and the initial values are Tp = 1000, Iy = 1, V3 = 1. The steady state be-

comes Ey = (25.00000000, 342.9615384, 34296.15384), which is asymp-
totically stable. When 7 # 0, we have the following Theorem 2.2

THEOREM 2.2. Suppose that

(i) Ro > 1,

(ii) (e + 6)(3/1—“_—}— aT/_Tmax)(s/T +aT [Tyax + ¢+ 6) > pB32TV,
(iii) BV > 2(s/T + aT /Tiax)-
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Then as T increases from zero, there is a value 19 such that the unique
infected equilibrium Ey is locally asymptotically stable when 7 € [0, 7o)
and unstable when T > 19. Further, system (2.1) undergoes Hopf bifur-
cation at Fo when T = 9.

Proof. If 7 = 0, we know that E, is asymptotically stable. Next
we show that there is a unique pair of purely imaginary roots %iwg for
characteristic equation (2.4) at positive equilibrium Fj.

If A = iw, w > 0 is a root of (2.4), separating real and imaginary
parts, we have the following:

(2.6) biw? — by = bs coswT + bsw sinwr,

w? — bow = — b3 sinwT + byw cos wT.
Squaring and adding both equation of (2.6) we finally have
(2.7) wS + (b2 — 2by)w® + (b2 — 2b1bs — b2)w? + bE — b3 =0,
where
b2 — 2by = (d — @ + 20T /Timax + BV)’ + & + 6% > 0,
B2 — 2bybs — b2 = (2 + 6%)(d — @ + 20T/ Typax + BV)’ > 0,
b2 — b2 = 2626V ([2(s/T + aT /Tmax) — BV] < 0.

Hence the conditions of the theorem imply that there is a unique positive
w satisfying Eq.(2.7), that is, the characteristic equation (2.4) has a pair
of purely imaginary roots of the form *iwp. From (2.6) we know that
Ton, corresponding to wyp is

bawd + (b1bz — babg)wd — b 2
ron = - arccos awp + (b1b3 — baba)wy — bsbs 4 2

, n=0,1,2,---.
wWo b§+biw% wo T

For 7 = 0, F, is stable. Hence by Butler’s Lemma [15], F; remains
stable for T < 79, where 79 = 79, as n = 0. We have now to show that
d
dRed)| -y,
dr

T=Tp
This will signify that there exists at least one eigenvalue with positive
real part for 7 > 7. Moreover, the conditions for Hopf bifurcation [16)
are then satisfied yielding the required periodic solution. Now differen-
tiating (2.4) with respect 7, we get

dX
[BA2 + 261 A + by — baTe ™ + bae ™ — b4T)\e')‘T](—E = e M (bsA + byA?).
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This gives
dA\ 71 3A2 4+ 261X + by + €7V [bg — T(baA + b3)]
dr) A(bgA + bg)e >
_3X2 42012 + by by T
- (bar + bg))\e—)‘T )\(b4)\ + b3) A
. 3)\2+2b1/\+b2 +E__ bZ T
B —)\()\3 + b1 A2 + bo ) + bs) = b3A bs(baA + b3) - A
Thus,
. {d(ReA) }
sign
dr ,
A=iwo
-1
= s1gn{Re<Z—j) } |
A=iwo
— siend Re 3AZ 4+ 201X + by
-8 AN+ DN+ boA+ by |
A=iwo
b2
R 4
e T A b | }
A=twg
— sign (bg — 3w§)(b2 — w%) + 2b1(b1wg — b5) _ b?l
(bawo — w8)2 + (bw? — bs)? b3 + bjwp
p .
&gn[a] ,
where
P = 263w8 + (302 + b2(b? — 2b2))wi + 263 (b3 — 2b3)wd
+ b2(b3 — 2bybs) — b3,
Q = (8] + bwh)[(bawo — wf)” + (b1 — b5)°].
Since

b3 — 2by > 0, b3(b% — 2b1bs) — b3bZ > b2(b3 — 2b1bs — ) > O,
we have
d(Re))

0.
dr >

T=T0,W=Wp
Therefore, the transversality condition holds and hence Hopf bifurcation
occurs at w = wp, 7 = 79. This completes the proof. O
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REMARK. It must be pointed out that Theorem 2.2 cannot deter-
mine the stability of bifurcation periodic orbits, that is, the periodic
solutions may exist either for 7 > 7y or for 7 < 79, near 73. Further, we
can investigate the stability of bifurcating periodic orbits by analyzing
higher-order terms. The calculation is very complex and the method is
trivial, so we omit it. The time delay induces instability and bifurcation
but there is no switching of stability.

For the parameters

d=0.01, 6§=04, c=3, a=0.8,
Tmax = 1300, s =4, 8= 0.0002, p = 1000.

Hence, the conditions of Theorem 2.2 are satisfied, and

E, = (6.000000000, 21.79461538, 7264.871795),
wp = 0.2257505045, 9 = 8.624589426.

(a) 7 =8.5,7 < 7p. In this case, E; is a stable spiral point.

(b) By Theorem 2.2, a Hopf bifurcation occurs when 7 = 7y, the
equilibrium Es loses its stability and a periodic solution bifurcates from
the equilibrium E; exists for 7 > 75. We let 7 = 8.7. Two trajectories
are shown, one with increasing and the other with decreasing ampli-
tude, hence the bifurcation is supercritical and the bifurcating periodic
solution is orbitally asymptotically stable.

By a similar arguments as those in the proof of Theorem 2.2 we obtain

THEOREM 2.3. Suppose that

(i) Ry > 1,

(i) (¢ + 6)(s/T + aT/Tmax)(s/T + aT /Tipax + ¢ + 8) > pB2TV,

(iii) BV < 2(s/T + aT /Tmax)-
Then the infected steady state Ey of the system (2.1) is absolutely stable;
that is, FEq is asymptotically stable for all T > 0.

For the parameters d = 0.01,6 = 1,¢ = 10,a = 9, Thax = 1300,s =
4,3 = 0.00002,p = 1000, we can obtain that the infected steady state
E5 of the system (2.1) is absolutely stable; that is, Fy is asymptotically
stable for all 7 > 0.

3. Global stability results and permanence

Standard and simple arguments shows that solution of the system
(2.1) always exist and stay positive. Indeed, as is obvious for system
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(2.1), we have

A

lim supT(t) <T =

t——+00

[ —d+\/a— +4as/Tmax.

Then there is a t; > 0 such that for any sufficiently small € > 0, we have
T(t) <T+e, for t>t.

THEOREM 3.1. There is an M > 0 such that, for any positive solution
(T(t),I(t),V(t)) of system (2.1),
Ity <M, V() <M, foralllarge t.

Proof. Set Vy(t) = T(t — 7) + I(t). Calculating the derivative of V4
along the solutions of system (2.1), we find

Vi(t) = s —dT(t — 7) + aT(t — 7)(1 = T(t — 7)/Trmaz) — 61
=—dT(t—7) =8I +aT(t —7) — a/TmasT*(t —7) + 5
— hVi(t) + Mo,

where My = (Tmax@® +4as)/4a, h = min(d, §). Recall that T'(t) < T+e
for all t > t;. Then there exists an M7, depending only on the parameters
of system (2.1), such that V() < My, for t > t;. Then I(t) has an
ultimately above bound. It follows from the third equation of (2.1) that
V(t) has an ultimately above bound, say, their maximum is an M. Then
the assertion of Theorem 2.1 now follows and the proof is complete. This
shows that system (2.1) is dissipative.

Define

Q={(T,I,V):0<T<T,0<I,V <M}

In the following we shall prove that the unstability of £, implies that
system (2.1) is permanent. Before starting our theorem, we give some
definitions: :

DEFINITION 3.1. System (2.1) is said to be uniformly persistent
if there is an 7 > 0 (independent of the initial data) such that every
solution (T'(t), I(t), V(t)) with initial condition of system (2.1) satisfies

>n, lim i S o S
Binoo inf T'(t) > n, t—lgfloo inf I(t) > n, tl}ﬂp@ infV(t) >n
" DEFINITION 3.2. System (2.1) is said to be permanent if there exists
a compact region o € int{) such that every solution of (2.1) with initial
condition will eventually enter and remain in region €.

Clearly for a dissipative system uniform persistence is equivalent to
permanence.
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THEOREM 3.2. System (2.1) is permanent provided Rg > 1.

In order to prove Theorem 3.2, We present the persistence theory for
infinite dimensional system from paper [17]. Let X be a complete metric
space. Suppose that X° C X, Xy € X, X% N Xy = 0. Assume that Y'(t)
is a Cp semigroup on X satisfying

Y(t): X% — XO,

(3.1 Y(t): Xo — Xo.

Let Y;(t) = Y(t)|x, and let Ay be the global attractor for Y,(t).

LEMMA 3.1. Suppose that Y (t) satisfies (3.1) and we have the fol-
lowing :

(i) there is a to > 0 such that Y (t) is compact for t > to;

(ii) Y(t) is point dissipative in X;

(iii) Ap = Ugpea,w(z) is isolated and has an acyclic covering M, where

_Mz {M17M23"' aMn};

(iv) We(M;)NnX® =0, fori=1,2,--,n.
Then Xy is a uniform repellor with respect to X°, i.e., there is an € > 0
siich that for any x € X, liminf;_, 100 d(Y (t)z, Xo) > €, where d is the
distance of Y (t)z from Xj.

We are now able to prove Theorem 3.2.

Proof of Theorem 3.2. We begin by showing that the boundary planes
of R3 repel the positive solutions of system (2.1) uniformly. Let us define

Co = {(¥, 81, ¢2) € C([-7,0], R3) : $(8) # O,
$1(8) = ¢2(0) = 0,6 € [~,01}.

If CO=intC({~7,0], R3), it suffices to show that there exists an ¢ >
0 such that for any solution u; of system (2.1) initiating from C?,
lim;_, yointd(ug, C®) > €p. To this end, we verify below that the con-
ditions of Lemma 3.1 are satisfied. It is easy to see that C® and Cp
are positively invariant. Moreover, conditions (i) and (ii) of Lemma 3.1
are clearly satisfied. Thus we only need to verify the conditions (iii) and
(iv). There is a constant solution E; in Co, to T'(t) = T,1(t) = V(t) =0.
If (T(t),I(t),V(t)) is a solution of system (2.1) initiating from Cp then
T(t) — T,I(t) — 0,V(t) — 0, as t — +oo. It is obvious that E; is
isolated invariant. Now, we show that W*(E;) N C® = (). Assuming the



A delay-differential equation model of HIV infection 1081
contrary, then there exists a positive solution (T(t), I(t), V(t)) of system
(2.1) such that ‘
(T(t), I(t),V(t)) — (T,0,0) as t — +oo.
Choosing £ > 0 small enough such that
T-¢>T.
Let t5 > 0 be sufficiently large such that
T—¢<T@)<T+¢, for t>tg—7.
Then we have, for t > tg,
Iy > BT -V (t—7) - 6I(),
V'(t) = pI(t) — ¢V (t).
Let us consider the matrix A, define by

As=(;‘5 ﬁ(T—f))

—C

(3.2)

Since A admits positive off-diagonal elements, Perron-Frobenius the-
orem implies that there is a positive eigenvector v for the maximum
eigenvalue a of A;. Moreover, by a simple computation we see that the

maximum eigenvalue « is positive, since we have pf3 (T — &) > cb. Let us
consider

I(t) = BT - OV(t—71) - 8I),

V() = pI(t) — ¢V (t).

Let v = (v1,v2) and [ > 0 be small enough such that
vy < I(tg+6) for 6 € [-T,0],
lug < V(tg+6) for 6 € [-1,0].

If (I(t),V(t)) is a solution of system (3.3) satisfying I(t) = lvy, V(1) =
lvg, for tg — 7 < t < tg, since the semiflow of (3.3) is monotone and
Agv > 0, it follows from papers [18, 19] that I(t) and V(t) are strictly
increasing and I(t) — o0,V (t) — +00 as t — +oo. Note that I(t) >
I(t), V(t) > V() for t > to. We have I(t) — +oo,V(t) — 400 as t —
+00. This contradicts Lemma 2.3. The above assertion is thus proved.
At this time, we are able to conclude from Theorem 3.1 that Cj repels
the positive solutions of (2.1) uniformly. Incorporating into Lemma 3.1
and Theorem 3.1, we know that system (2.1) is permanent. a

(3.3)

By a similar arguments as those in the proof of Theorem 3.2 we obtain
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THEOREM 3.3. Assume Ry < 1 in system (2.1). Then the equilibrium
E(T,0,0) is globally asymptotically stable.

4. Existence of a stable periodic orbit

Our main result below gives sufficient conditions that almost every
solution is asymptotically periodic.

THEOREM 4.1. Suppose that

(i) Ro> 1,7 =0,

(ii) (¢ + 6)(s/T + aT /Tmax)(s/T + aT [ Tmax + c + 6) < pB*TV.
Then the system (2.1) exists an orbitally asymptotically stable periodic
solution.

Proof. A change of variables z; = —T, 2 = I and 23 = —V transforms
system (2.1) into

% =—8—dz1 +az1(1+ 21/Tmax) + Bz123,
(4.1) 29 = Ba123 — 029,
23 = — pzg — C23.
If we write (4.1) as z = f(z), Jacobjan matrix of f at z is as follows

—d+a+2a/Tmaxz1 + 623 0 Bz

J(z)= : ﬁz;; -6 ,@Z1

0 -p —c
If E = {(21,22,23) : 21 < 0,22 > 0,23 < 0}, J(2) has non-positive
off-diagonal elements at each point of E. Let 2] = ~T,z5; = I and
23 = —V. It is obvious that (z{,23,23) is the unique equilibrium of

system (4.1). Since the inequality (2.5) is reversed, the analysis above
shows that (2}, 2},2%) is unstable and det J(2*) < 0. Moreover, since
system (2.1) is permanent, there exists a compact subset B of E such
that for each zy € E, there exists a t(zg) > 0 such that 2(t,29) € B for
all t > t(zp). Consequently, by Theorem 1.2 of paper [20], system (2.1)
has an orbitally asymptotically stable periodic solution. The assertion
of Theorem 4.1 now follows and proof is completed.

ExAMPLE. Let us consider the following model
T = 5—0.01T + 8T'(1 — T/1300) — 0.0002TV
(4.2) I =0.0002TV — 0.51

V = 10001 — 9V
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By applying Theorem 4.1 to system (4.2) we see that there exists an
orbitally asymptotically stable periodic solution.

5. Discussion

We obtained a restriction on the number of viral particles released
per infectious cell in order for infection to be sustained. Under this re-
striction, the system has a positive equilibrium-the infected steady state.
By stability analysis we obtained sufficient conditions on the parame-
ters for the stability of the infected steady state. We also obtained the
conditions for the system exists an orbitally asymptotically stable pe-
riodic solution. Biologically, it implies that the some parameter values
can cause the cell and virus population to fluctuate.

We introduced a time delay into the model which describes the time
between infection of a CD4* T-cell and the emission of viral particles on
the cellular level. The same restriction on the number of viral particles
released per infectious cell is required. By analyzing the transcenden-
tal characteristic equation, we analytically derived stability conditions
for the infected steady state in terms of the parameters and indepen-
dent of the delay. Using the given parameters values, we found that all
the conditions are satisfied. Thus, the infected steady state is stable,
independent of the size of the delay, though the time delay does cause
transient oscillations in all components. Biologically, it implies that the
intercellular delay can cause the cell and virus population to fluctuate
in the early stage of infection, in a longer term they will converge to the
infected steady state values.

To incorporate the intracellular phase of the virus life-cycle, we as-
sume that virus production lags by a delay 7 behind the infection of a
cell. This implies that recruitment of virus-producing cells at time ¢ is
not given by the density 8T(t — 7)V (¢ — 7) of newly infected cells as
n (2.1), but rather by the density of cells that were newly infected at
time ¢t — 7 and are still alive at time ¢. If we assume a constant death
rate m for infected but not yet virus-producing cells, the probability of
surviving from time ¢ — 7 to time ¢ is just e~™". Thus the refined model
can be written as (1.1). Hence, we have the following system

T=s—dl'+aT(1 = T/Tmax) — BTV,
(5.1) I=pe™™T(t—7T)V({E—7)~46l,
V =pl —¢V.
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In the following, we always assume 8 = Be™™" and Rg > 1. We should
study the stability of positive equilibrium as 7 increase. We know that

T,1,V are dependent on 7, the characteristic equation (2.4) gives the
form of the following:

(5.2) P(A,T)+Q(A,T)e™ =0,
where

POVT) = N3+ b1(1)A2 4 by(r)A + bs(7),
Q(\,7) = b3(7) + ba(T)A,

bi(1) = d — a+2aT/Tax + BV + ¢+ 6,
ba(r) = b + (c+ 6)(d — a + 20T/ T + BV),
b3(7) = pBAHLTV — pBiT(d — a+ 2T /Timax + BV),
ba(r) = — pAiT,
bs(7) = c6(d — a + 20T Tmax + AV).
o g P _
T =2 T=gpls = dT +al (1~ T/Tow)],
7= 1’%[3 T + aT(1 = T/ Toa)].

Because realistically constructing model often leads to intractable math-
ematics, there are a few results on this kind of transcend equation (5.2)
which only obtained a region in parameters space where all roots have
negative real parts. This effectively means that one cannot compute
exactly the values of 7 at which stability switches occur. Beretta and
Kuang[21] have developed a systematic approach to studying the diffi-
cult characteristic equations arising from such system. Their approach
is a computationally assisted one, requiring the plotting of accurate
graphs of certain functions. One cannot in practice compute the stability
switches analytically. We will summarize their technique as it applies to
our particular problem in the future work.

By analogous analysis, we know that except for the dynamical behav-
ior of positive equilibrium, other results such as boundedness of solution,
global stability of boundary equilibrium and permanence on system (1. 1)
with 81 = fe™™" are the same as those on system (2.1).
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