J. Korean Math. Soc. 42 (2005), No. 5, pp. 1057-1069

NON-COMPACT DOUGLAS-PLATEAU PROBLEM

SuN Sook JIN

ABSTRACT. In this article, we prove the existence of two embedded
minimal annuli in a slab which are all bounded by a Jordan convex
curve and a straight line. '

1. Introduction

The classical Douglas-Plateau problem for two compact contour is to
find a minimal annulus bounded by two disjoint Jordan curves. One
classical result due to Douglas says that if A; and Ay are the least area
disks bounded by Jordan curves 7y; and 73, respectively, satisfying

inf{Area(S)} < Area(A;) + Area(Asz)

where the infimum is over all surfaces’ areas of annular type bounded by
~v1 and -2, then there is a minimal annulus with the boundary v; U 7.
Additionally, D. Hoffman and W. Meeks of [5], W. Meeks and B. White
of [10], and Yi Fang and J-F. Hwang of [4] gave another kind of sufficient
or necessary conditions for this problem. In general, the non-compact
Douglas-Plateau problem becomes more difficult. There is a classical
example bounded by two parallel straight lines, which is a piece of one
of Riemann’s minimal examples. Recall the one-parameter family of Rie-
mann’s minimal examples are the only complete minimal surfaces of R3
foliated by circles and straight lines in parallel planes except planes,
catenoids, and helicoids, see [13]. Recently, Yi Fang and J-F. Hwang[4]
solved various non-compact problems for minimal annuli with two con-
vex boundary curves lying on parallel planes. For example, they proved
the existence of two embedded minimal annuli bounded by continuously
embedded, proper, complete, non-compact, non-flat convex curves in
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parallel planes. They used the Jenkins and Serrin’s minimal graphs of
(7] as the barriers confining all of approximating surfaces.

In this paper, we consider minimal annuli in a slab, whose boundary
consists of a planar convex Jordan curve and a straight line by that:

THEOREM 1. Let v C P; be a convex Jordan curve and let £ C P,
be a straight line, where P; := {(z,y,2z) € R3| z = t} is a horizontal
plane at the height t € R. Denote D, by the compact planar disk in
P, with 0D, = v and let POJr be the half-plane of Py bounded by £.
Suppose that there is a (maybe branched) compact minimal surface ¥
with 0¥ C Dy U P(;" , then there are two embedded minimal annuli A
and B such that

(1) 0A=0B=~vyUL

(2) For each t € (0,1), AN P, and BN P, are strictly convex Jordan
curves.

(3) Int(A) NInt(B) = 0.

(4) Now let N be a connected compact non-planar (maybe branched)
minimal surface such that &N C D., U Py, then

Int(A) NInt(N) =0, BNN#Q.
(5) A and B have the same symmetry groups as that of y U £.

The basic idea to prove this theorem is to approximate the straight
line £ C Py with covex Jordan curves v, C Py, n =1,2,3,---. Then, by
Proposition 1 in the next section, we can get embedded minimal annuli
Ay and B, bounded by v U ~,. Take a Riemann’s minimal example
bounded by the straight line £ and a circle lying on P; containing -y in its
interior, and use it as the barrier confining all of A,,’s and B,;’s. Then
with the similar method of the proof of Theorem 3.1 in [4], we prove
that there are subsequences of {A,} and {B,} converge to embedded
minimal annuli A and B, respectively, in the interior of the slab bounded
by Pp and P;. Moreover, since the boundary curves v and +,, are convex,
M. Shiffman’s first theorem in [14] shows that the intermediate curves
A, NP, and B, NP, 0 <t < 1, are all strictly convex Jordan curves.
Therefore we can divide the approximating annulus A4,, into two graphs
over a vertical plane, each of which is simply connected. The same to
B,,. Then we can use the Courant-Lebesgue lemma in [3] to prove that
the convergence can be extended to their boundaries, respectively, and
O0A=0B=~yUL.



Non-compact Douglas-Plateau problem 1059
2. Preliminaries

Let us define a slab and a solid cylinder as followings:
S(a,b) = {(z,y,2) e R*| a < 2 < b}
Cr = {(z,y,2) € R?| 22 + ¢% < r?},
respectively, and K} is the Gaussian curvature of a surface M C R3.

LEMMA 1 (COMPACTNESS LEMMA [1]). Let {M;}, i =1,2,3,---, be
a sequence of minimal surfaces in a bounded domain € of R3. Suppose
there is a constant ¢ > 0 such that |K s, (z)| < ¢ for all i. Then we have
a subsequence of {M;} converges smoothly to an immersed minimal
surface M, (with multiplicity) in Q and |Ky (z)| < c. If each M; is
embedded, then M, is also embedded.

LEMMA 2 (INTERIOR CURVATURE ESTIMATE [4]). If A C S(t1,t2)NC;
is a minimal annulus such that 0A = ~y1U~yy, wherey; C P, 1 = 1,2, are
convex Jordan curves, then there is an absolute constant cy > 0, such
that K (p) < 9%, where d = dist(p, 0S(t1, t2)).

With this lemma, Yi Fang and J-H. Hwang gave a generalization of a
theory dealing with smooth convex boundary developed by D. Hoffman
and W. Meeks in [5] and B. White in [15], to the continuous boundary
case by following:

PROPOSITION 1. [4] Let D, and Dg be two open disks lying on par-
allel planes, and their boundaries a and 3 are continuous convex Jordan
curves, respectively. Suppose that there is a(maybe branched) minimal
surface ¥ with 0¥ C Dy U Dg, then there exist at least two embedded
minimal annuli A and B bounded by aU 3 such that

(1) A is stable, B is unstable. Recall a minimal surface is called stable
if, with respect to any non-trivial normal variation that fixing the
boundary, the second derivative of area functional is positive. If
the second derivative of area is negative for some variation, then
this surface is called unstable.

(2) If M # A is a compact(maybe branched) minimal surface with
OM C Do U Dg, then M is contained in the compact region of R3
bounded by AU Dy U Dg and

Int(A) N Int(M) =0, Int(B)NInt(M) # 0.
(3) Both A and B have the same symmetry group of the boundary.
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Finally we state some general compactness arguments of minimal
surfaces of A. Ros and J. Pérez in [12]. First we need to control uniformly
the relative size of the domain that expresses locally a minimal surface
as a graph over the tangent plane. Let M be a surface of R? with the
tangent plane TM,, p € M, and the Gauss map G : M — 52, Given
p € M and r > 0, we label the tangent disk of radius r by

DT (p, r):i={p+v|veTM, |v|<r}.

Denote W (p,r,€) the compact slice of the solid cylinder of radius r
around the affine normal line at p,

W(p,r,€) :={g+tG(g) | ¢ € DT (p,7), |t| <€}
Now we formulate the notion of convergence for minimal surfaces.

DEFINITION 1. [12] Let M and M,, n=1,2,3,---, be properly em-
bedded minimal surfaces lying on an open set O C R3. We say that the
sequence {M,} converges to M in O with finite multiplicity if M is the
accumulation set of {M,} and for all p € M there exist r,e > 0 with

e M NW(p,r €) can be expressed as the graph of a function
w:DT(p,r) > R

e For all n large enough, M, N W(p,r, €) consists of a finite number
(independent of n) of graphs over DT (p, r) which converge to u in
the C™-topology, for each m > 0.

In the situation above, we define the multiplicity of a given p € M as
the number of graphs in M, N W(p,r,¢), for n large enough. Clearly,
this multiplicity remains constant on each connected component of M.
Given a sequence of subsets { F},} in the open domain O, its accumulation
set is defined by {p € O | There is p, € F,, with p, — p}. Notice the
Gaussian curvature bound also follows the compactness result in the
following general settings:

LEMMA 3 (Bounded Area [12]). Let {M,} be a sequence of properly
embedded minimal surfaces contained in an open region O. Suppose that
{M,} has an accumulation point and that for any 3-ball B C O there
exist positive constants ¢; = ¢;(B), i = 1,2, with

Area(M, N B) <e1, |Km.npl L2

for all n. Then there exists a subsequence { My} of {My} and a properly
embedded minimal surface M C O such that {M;} converges to M in
O with finite multiplicity.
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LEMMA 4 (Unbounded Area [12]). Let {M,} denote a sequence of
properly embedded minimal surfaces contained in an open subset O of
R3. Suppose that there is a sequence p, € M, converging to a point
p € O and that for any 3-ball B C O there exist a positive constant
¢ = ¢(B) with |Kym,np| < ¢ for all n. Then there exists a subsequence
{M,} and a connected minimal surface M in O satisfying

(1) M is contained in the accumulation set of {Mj}.

(2) pE M and KM(p) = limg 00 KMk (pk).

(3) M is embedded in O, but not necessarily properly embedded.

(4) Any divergent path in M either diverges in O or has infinite
length.

Although both general compactness arguments hold in the sequence
of properly embedded minimal surfaces without boundary, with suitable
modifications using the method of B. White in [15], we may have the
similar result of a sequence of properly embedded minimal surfaces with
boundary.

3. The proof of the theorem

In this section, we will prove the theorem by several steps. Let ¢
denote the y-axis, and let {D,}, n =1,2,---, be a sequence of disks in
Py such that

(DN €) C (Dps1N8), (DnNPY) C (Dpy1 NE)
lim D, =¢, 0% C D, U (D1 NFy),

n—oo
where PS’ := PyN{z > 0} is the half plane bounded by £. For example,
if we take
rn=a+n2+n+—71;, an=a+n2+n
for a large a > 0 satisfying the given conditions, then the disk
Dy :={(z,9,0) | (x—an)? +y> =17}

satisfies the above all conditions. On the other hand, let us denote the
continuous convex curve <y, by the union of an circular arc of 8D, in
the positive half-plane and a portion of ¢ contained in D,, such that

Y := (0Dp, N Py ) U (€N Dy,).
If we denote the compact set I, in the half-plane P(;* with the boundary

Oy, = vn, then
F1CF2C"'—>P6|_.
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FiGurE 1.

Observe that for any » > 0 there is an integer ng > 0 such that
Y. N Cr = €N C, whenever n > ng.

Since both v and ~, are continuous convex curves in the parallel planes
and 0¥ C D, UT,, by Proposition 1 there exist a stable embedded
minimal annulus A4,, and an unstable embedded minimal annulus B,
bounded by yU~, for all n =1,2, .- respectively.

STEP 1. In this step, we will show that both sequences {Ay} and
{B,} converge in the interior of the slab S(0,1). Denote D C P; by a
disk whose boundary 8D is a circle containing ~ in its interior. Recall
0X Cc DU D, for all n, together with Proposition 1 again, it leads us to
take a stable embedded minimal annulus R,, such that

OR, = 0D UJOD,,.

Cram 1. The sequence of Gaussian curvature {Kpg,} of R, is uni-
formly bounded.

Proof. Suppose not, then we have a point p,, € R, where K, reaches
its minimum, that is;

—Cn := KR, (pn) < KR, (p) forall pe R,
C,—00 as n— oo.
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Denote by pn = (n, Yn, 2n), 0 < 2z, < 1, and expanding homothetically
each R,, such that

Ry, = \/C—n(Rn —pn)a
where R, — pn := {p € R® | p+ p, € R,}. This new minimal surface
R, passes through the origin and the Gaussian curvature attains its
minimum at that point with value —1 for all n = 1,2,---. Moreover,

the boundary of R, is a planar convex curve and the spherical image of
R, is equal to that of R,, so we have

/KR dA:/ KRndA>—47T
R, " Rn

since the Gauss map is one-to-one in R,. Additionally, {R,} is a se-
quence of properly embedded minimal surfaces, with uniform Gauss-
ian curvature bound and an accumulation point at the origin. Under
these conditions, with a suitable modification to deal with the boundary
curves using the methods of [15], Lemma 4 implies, after passing to a
subsequence, that there exists a connected embedded minimal surface
M which is contained in the accumulation set of {R,} and passes the
origin with absolute Gaussian curvature one at that point. So M is not
a plane, and every divergent path in M either diverges to OM or has
infinite length. Notice M is produced by analytic continuation, starting
at the accumulation point 0 € R?2, of the limits of graph pieces of the
surfaces R,,. Therefore, M has total curvature not less than —4n. If the
boundary of M exists, it must be the limit of arbitrary large homothetic
images OR,, N P, where either tg := /Cp(1 — 2,) or tg := —/Crzn. It
is clear that the radius of boundary circles of R, are not less than the
minimum m > 0 of the radius of D and that of 9D;. So the planar
curvature of AR, is bounded by
m

VCn

it means that the boundary curve &M must be a straight line. However,
if we rotate M around it by 7 degrees, then we get a complete minimal
surface without boundary with total curvature at least —8n containing
a straight line, which is impossible, see [9]. We have shown that

oM = .

—0 asn— o0:

As a result, the limit surface M is a minimal surface without bogndary
which has the total curvature not less than —4n. It means that M must
be a catenoid.
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Now take a disk D C Pyt in the half-plane where 8% C dDUAD, then,
by Proposition 1 again, there is another Riemann’s minimal example
R C 5(0,1) bounded by 0D U JdD. We can choose a large number
ng > 0 satisfying

Dc D, forall n>ny.
Since every R, is stable, by Proposition 1-2, if n > ng
(]‘) R C VRn?
where Vg, is the solid of the slab 5(0,1) bounded by R,, respectively.
Let us denote r := ming<¢<1 |[R N P| > 0, then we can say that

RnﬂP0| VCr|Ry NP, |
(2) > \/Cn|RN Py, |
Z LY, Cn — 00,
which is contradict to that M is a catenoid. Note every intermediate

circle of a catenoid must have the bounded length. So {R,} has the
uniform curvature bound, and the claim is proved.

CLAIM 2. Given p € R3, there exists a positive number ro = 7o(p)
and a positive uniform constant ¢ = c(p) such that for all n,

Area(R, N B,) < cr?
if r > ro, where B, := B(p,r) is the ball of radius r with center p.

Proof. Consider the function |¢ — p|?, where ¢ € R,. Since R, is
minimal, we have
AR,lg—pl* = 2divg,lg - p| = 4,

where Ag, and divg, denote the Laplacian and the divergence of R,
respectively. By Stokes’ theorem integrating this gives

4Area(B, N Ry) = / Arla—pP =2 / .
BrNR, 3(BrﬂRn)

where 7 is the exterior conormal vector along the boundary curve. It is
geometrically clear (and follows from the co-area formula as that of [2]
or [8]) that

[ ta-pn < (Asea(B, N o).
8BrNRy T
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Recall each end of Riemann’s minimal examples must be asymptotic to
a horizontal plane. So for a sufficiently large 7, the area of B, N R, has
the linear growth with respect to r. Thus we have

Area(B, N Ry,)
1

1 1
=5 (q—p,n)+§ (q—p,n>+§ (g—p,m
2 JaB.NR, 8DnNB; oD
1
< ért4mr? + §|8D| T

for a constant ¢ > 0, since (g — p,n) < |¢ —p| < r on B;.

We have shown the uniform curvature estimate and the uniform area
bound condition of {R,}. Therefore by Lemma 3, together with the
arguments in [15] to deal of the boundary, there exists a (possibly non
connected) complete embedded minimal surface R such that for each
component M of R has the boundary 0D U ¢, if it exists, at least one
of the components has nonvoid boundary. Moreover, after passing to
a subsequence, the surfaces R,’s converge uniformly on compact sets
to R in the interior of the slab S(0,1) with finite multiplicity which
depends on the connected component of R. In particular, any component
of R must have genus zero and the total curvature is at least —4m, this
control on the genus follows because each component is finitely covered
by surfaces of genus zero. Suppose that OM = 0D U ¢, then, by the
second result of M. Shiffman of [14], each intermediate curve M N P,
0 <t < 1,is also a circle. The same holds with R, N P, 0 <t < 1,
so the multiplicity of the limit must be one. Since the sub-annulus
R, N S(1 —t,1) can be chosen arbitrarily close to M N S(1 —¢,1) for
sufficiently small ¢ > 0, there is no other component with nonempty
boundary. Let M’ be a component of R has no boundary, then it would
be a horizontal plane by the Halfspace theorem in [6]. In particular M’
must intersect M, which is a contradiction. As consequence, the limit
surface R is just the above component M. Observe that

OR=0DU/{
and it can not be a plane, a catenoid, nor a helicoid, such that Therefore,
R must be a piece of a Riemann’s minimal example, see [13].

In the above processing, the stability of all of R,,’s is crucial to prove
the uniform curvature estimate of the sequence. In particular, see the
previous arguments (1) and (2). Unfortunately, because that each By, is
not stable, we cannot use the same arguments for it. If m > n then

0A, = 0B, =vU~v, C DU Dy,.
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By Proposition 1-2, since R,, is stable, we have
Int(Ay) NInt(Ry) =0, Int(By)NInt(Ry) =0
for all m > n. Let V and V,, be the solids in R? such that
8V =RUPJUD, Vy=RnUDnUD
then Ay, B, C Vyy, for all m > n, clearly, and V,,, tends to V. Thus
A,, B, CV.

Recall 3V meets the intermediate plane along the circles, so for given
0 < t < 1 we can choose a positive number r(t) such that

VNP CCrpy.
From now on, we have shown that for all n,
AnﬂS(t,l) - Cr(t), BnﬁS(t,l) C C’r(t)>

where 0 < t < 1, respectively. Now we can use Lemma 2, and then
Lemma 1, to prove that for any 0 < t,, < 1 there are subsequence of
{A, N S(tm, 1)} and {B, N S{tm,1)} converging to embedded compact
minimal annuli

Atm7 Btm - S(tm7 1)7

respectively, where t,, — 0 as m — oo. By a diagonal argument, we see
that these subsequences converge to embedded minimal surfaces .A and
BB, respectively, in the interior of S(0,1). Now for each s € (t,,1), the
intermediate curves A, N P, and B,, N Ps are convex Jordan curves and
both convergences are smooth, so AN Ps and BN P; are strictly convex.
Hence A and B are minimal annuli.

STEP 2. In this step, we extend the above convergence result to the
boundary. Take a vertical plane II, we may let it be the zz-plane, and
denote the projection to it by Projy(x,y,2) = (,0, z). Let us define

T := Int(Projg(Ax)),

which is bounded by two line segments ¢1 = Proj(7), £5 = Projg(vn),
and two curves oy, B, connecting a point of 1 and the other point of £3.
By Shiffman’s first theorem in [14], every intermediate curve A, N P,
0 < t < 1, is a strictly convex Jordan curve. Thus each Projy(A, N P;)
is also a line segment and A, N P; consists of two graphs over Q. In
this way, we may say that a, is the left side boundary and 3, is the
right side boundary of Q%. Recall, in the proof of Lemma 1 in [4], we
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FIGURE 2.

have known that both a, and (3, are smooth convex curves. Moreover,
T is a domain with piecewise smooth boundary by

AN = £, U £ U a U B

with only four corner points. Notice A, consists of two subsets A7 and
A, where Int(A}) and Int(A;) are minimal graphs over Qf. Let us
denote v = yN AT and v = v, N AL, then we have

AL = 0 U B U UAE.

Additionally, the limit surface A also consists of two simply connected
minimal surfaces AT and A~, whose interiors are minimal graphs over
a domain in the vertical plane II, and A, converges to AT as n — co.
On the other hand, we choose a solid cylinder C, for large r > 0 which
contains v in its interior. In the previous argument, we have proved that
both the left side boundary a, and the right side boundary 3, of Qf
are convex for all vertical planes II, so A, \ Cr becomes a graph over
a domain in the horizontal plane Py, and A, N JC; is a simple curve.
Let & and 3} be the parts of A} such that Projy(&;) = an and
Projg(3F) = B, then we have

A NC) = (& NCHUBFNC Ut U (NG U (A NaC,),

which is a connected simple closed curve. Therefore, A;" NC, is a simply
connected minimal surface. Now we can take a closed unit disk A in the
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plane and a conformal embedding
X,:A-R?

of A} NC, such that for three fixed points p; € A, we have X, (p;) = ¢;

where ¢; € AT N (yU L) NC,, i=1,2,3. Since A, — yU L and
('YU'Vn)mCT = (’)’Uf)ﬂc,.

for all sufficiently large n, this is always possible. Observe all of the

Dirichlet integrals f, |DX,|? are uniformly bounded, since each X, is

conformal and A* N C, has a bounded area. Then by the well-known

Courant-Lebesgue lemma, see [3], we can say that At NC,. = X,(A)

converges to (AT UyU€)NC, and is continuous up to boundary. Similar
argument for A~ also holds. Thus we see that

OANCH)N (P UP)=(ue)nC,
for all » > 0 large enough. Moreover, it is clear that A C Py U Pi.
Therefore A has the boundary v U £. With the similar method to B,
OA=0B=~vyU/{
and they are continuous up to boundary.
STEP 3. Finally, let N be a connected non-planar compact(maybe

branched) minimal surface such that 8N C D, UP, . Let W, be the solid

bounded by A, UD,UT,, and W be the solid bounded by AUD., UP; .
By lemma 1, N C W, for all n, and Int(4,) N Int(N) = @ as well as
N Cc W since W,, - W. Note A # N since N is compact and A is not
compact. By the comparison principle for minimal surfaces, we have

Int(A) NInt(N) = 0.
By Proposition 1-2 again, for all n we have B, N N # @ using the fact
that By, is unstable. Therefore
BNN#£0.

In particular, it follows that A4 # B. Now let W, be the solid bounded

by B, U D, UT,, and W’ be the solid bounded by BU D, UP_. Then

since W) C W, lim,_,0o W,, = W, and lim,, . W), = W', we have

W’ C W. By the comparison principle for minimal surfaces, we have
Int(A) N Int(B) = @.

Finally, since all of A,’s and B,’s have the same symmetry group as

that of boundary by Proposition 1-3, the same holds for the limits 4
and B.
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