AVERAGING PROPERTIES AND SPREADING MODELS

KYUGEUN CHO AND CHONGSUNG LEE*

ABSTRACT. In this paper, we study averaging properties in Banach spaces using the Brunel-Sucheston's spreading model. We show that the Schlumprecht space S does not have the Banach-Saks property and l_1 is finitely representable in the Schlumprecht space S using the spreading model properties.

1. Introduction

We shall state some fundamental properties about Brunel-Sucheston's spreading model.

Let (x_n) be a bounded sequence with no norm Cauchy subsequence in a Banach space X. Suppose that the limit

$$\lim_{\substack{m \to \infty \\ m \le n_1 < \dots < n_k}} \left\| \sum_{i=1}^k a_i x_{n_i} \right\|$$

exists for each $(a_i)_{i=1}^k \in S_0$, where S_0 is the space of sequences $a=(a_i),\ i=1,2,\cdots$ of real numbers such that only finite many of a_i are different from zero. We shall call such a sequence (x_n) a good sequence. Then we can define the nonnegative function Ψ on S_0 by

$$\Psi((a_i)_{i=1}^k) = \lim_{\substack{m \to \infty \\ m \le n_1 < \dots < n_k}} \left\| \sum_{i=1}^k a_i x_{n_i} \right\|.$$

Received May 19, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 46B15.

Key words and phrases: Banach-Saks property, weak Banach-Saks property, spreading model, Schlumprecht space.

^{*}This work was supported by the Inha University Research Grant.

Clearly Ψ defines a seminorm on S_0 . Furthermore, since (x_n) is assumed to have no norm Cauchy subsequence, Ψ indeed defines a norm on S_0 [2]. Hence we shall write $\left|\sum_{i=1}^k a_i e_i\right|$ in place of $\Psi((a_i)_{i=1}^k)$ for each $(a_i)_{i=1}^k \in S_0$. Let F be the completion of $[\Psi(S_0), |\cdot|]$. We shall call $[F, (e_n)]$ the spreading model of a good sequence (x_n) and (e_n) the fundamental sequence of the spreading model. Then (x_n) and $[F, (e_n)]$ have the following properties:

(1) The norm $|\cdot|$ for F is invariant under spreading in the sense that

$$\left| \sum_{i=1}^{k} a_i e_i \right| = \left| \sum_{i=1}^{k} a_i e_{n_i} \right|$$

(2)

$$\lim_{\substack{m \to \infty \\ m \le n_1 \le \dots \le n_k}} \left\| \sum_{i=1}^k a_i x_{n_i} \right\| = \left| \sum_{i=1}^k a_i e_i \right| \quad \text{for every } (a_i)_{i=1}^k \in S_0.$$

A Banach space X is said to have the Banach-Saks property if every bounded sequence in X admits a subsequence whose arithmetic means converge in norm. In 1938, S. Kakutani[5] showed that if X is uniformly convex, then X has the Banach-Saks property. In 1963, T. Nishiura and D. Waterman[7] proved that if a Banach space X has the Banach-Saks property, then X is reflexive.

A Banach space X is said to have the weak Banach-Saks property if every weakly convergent sequence has a subsequence whose arithmetic means converge in norm. It is obvious that the Banach-Saks property implies the weak Banach-Saks property. Indeed, if a sequence (x_n) in a Banach space X converges weakly to x in X, the arithmetic means of any subsequence of (x_n) also converge weakly to x, thus, the strong limit of the arithmetic means, if it exists, must be x. For this reason, we can translate any weakly convergent sequence to a weakly null sequence and look for the arithmetic means to converge to zero in norm.

To end with this introduction, let us mention the following lemmas.

LEMMA 1. [4] If (x_n) is a sequence in a Banach space, then there exists a subsequence (x_{n_k}) of (x_n) such that either no subsequence of (x_{n_k}) has convergent arithmetic means or every subsequence of (x_{n_k}) has arithmetic means converging to the same limit.

LEMMA 2. [8, Theorem 1] Let (x_n) be a good sequence in a Banach space X and $[F,(e_n)]$ be its spreading model. Then for any $\epsilon > 0$ and integer $t \geq 2$ one can select a subsequence (x'_n) of (x_n) with the following property:

For every $k, n_i \in \mathbb{N}$ $(i = 1, 2, \dots, k)$ with $n_1 < n_2 < \dots < n_k$ and $(a_i)_{i=1}^k \in S_0$, we have

$$\begin{cases} (1 - \epsilon) \left| \sum_{i=1}^{k} a_i e_i \right| - (2 \log_t k) \sup_{1 \le i \le k} |a_i| \sup_{n} \|x'_n\| \\ \leq \left\| \sum_{i=1}^{k} a_i x'_{n_i} \right\| \\ \leq (1 + \epsilon) \left| \sum_{i=1}^{k} a_i e_i \right| + (3 \log_t k) \sup_{1 \le i \le k} |a_i| \sup_{n} \|x'_n\| \end{cases}$$

Lemma 3. [2] In any Banach space, every bounded sequence with no norm convergent subsequence has a subsequence which is a good sequence.

LEMMA 4. [8, Lemma 1] Let (x_n) be a good sequence in a Banach space X and $[F, (e_n)]$ its spreading model. We put

$$\rho(k) := \left| \frac{1}{k} \sum_{i=1}^{k} e_i \right| \qquad (k \in \mathbb{N}).$$

Then $\rho := \lim_{k \to \infty} \rho(k)$ exists and is equal to $\inf_k \rho(k)$.

2. Banach-Saks property and spreading model

The following is an application of Brunel-Sucheston's spreading model to weak Banach-Saks property in Banach spaces.

THEOREM 1. Let X be a Banach space. Then the following are equivalent:

- (1) X has the weak Banach-Saks property.
- (2) For every weakly null and good sequence (x_n) in X with its spreading model $[F, (e_n)], \rho = 0$.

Proof. Suppose that X has the weak Banach-Saks property. Let (y_n) be a weakly null and good sequence with its spreading model $[F, (e_n)]$. Then there exists a subsequence (x_n) of (y_n) such that every subsequence

of (x_n) has the arithmetic means converging to zero by Lemma 1. By Lemma 2, there exists a subsequence (x'_n) of (x_n) such that for $k \in \mathbb{N}$,

$$\frac{1}{2} \left| \frac{1}{k} \sum_{i=1}^{k} e_i \right| - (2 \log_2 k) \frac{1}{k} \sup_n \|x_n'\| \le \left\| \frac{1}{k} \sum_{i=1}^{k} x_i' \right\|$$

Since $\frac{1}{k} \sum_{i=1}^k x_i' \to 0$ and $(2 \log_2 k) \frac{1}{k} \to 0$ as $k \to \infty$, $\frac{1}{k} \sum_{i=1}^k e_i \to 0$ as $k \to \infty$ and $\rho = 0$.

Suppose that for every weakly null and good sequence (x_n) in X, $\rho = 0$. Let (y_n) be a weakly null sequence in X. We show that (y_n) has a subsequence with convergent arithmetic means. If (y_n) has a convergent subsequence, its limit is necessarily zero and so its arithmetic means converge to zero. So we may assume that (y_n) has no convergent subsequence. By Lemma 3, (y_n) has a subsequence (x_n) which is a weakly null and good sequence with its spreading model $[F, (e_n)]$. By Lemma 2, there exists a subsequence (x_n') of (x_n) such that

$$\left\| \frac{1}{k} \sum_{i=1}^{k} x_i' \right\| \le \frac{3}{2} \left| \frac{1}{k} \sum_{i=1}^{k} e_i \right| + (3 \log_2 k) \frac{1}{k} \sup_n \|x_n'\|.$$

Since $\lim_{k\to\infty} \left| \frac{1}{k} \sum_{i=1}^k e_i \right| = \rho = 0$ and $\lim_{k\to\infty} (3\log_2 k) \frac{1}{k} = 0$,

$$\lim_{k \to \infty} \left\| \frac{1}{k} \sum_{i=1}^k x_i' \right\| = 0.$$

This completes our proof.

Let (x_n) be a good sequence in a Banach space X and $[F, (e_n)]$ its spreading model. Let F_n be the closed subspace of F generated by the vectors $\{e_i : i \geq n\}$ and $F_{\infty} = \bigcap_n F_n$. Then $[F, (e_n)]$ has the following properties which are found in [2].

LEMMA 5. [2] Let (x_n) be a good sequence in X with its spreading model $[F, (e_n)]$. Then

- (1) There exists a linear isometry T on F such that $Te_n = e_{n+1}$ for all n. T is called the shift on F.
- (2) $y \in \cap_n F_n = F_\infty$ if and only if y = Ty.

- (3) If $F_{\infty} \neq \{0\}$, F_{∞} is 1-dimensional and $F = F_{\infty} \oplus \overline{(I-T)F}$, where $\overline{(I-T)F}$ is the closure of the manifold (I-T)F in the norm $|\cdot|$.
- (4) If $\lim_{n\to\infty} \frac{1}{n} \sum_{j\leq n} e_j$ exists in F, (x_n) has a subsequence whose arithmetic means converge in norm $\|\cdot\|$.

To prove Theorem 2, we need the following lemma and proposition.

LEMMA 6. Let (x_n) be a good sequence in X with its spreading model $[F, (e_n)]$. Then

- (1) If $F_{\infty} \neq \{0\}$, then (e_n) has a arithmetic means converging to a non-zero element in F_{∞} with a norm $|\cdot|$.
- (2) If (e_n) has a convergent arithmetic means with a norm $|\cdot|$, then the limit is an element of F_{∞} .

Proof. (1) By (3) of Lemma 5, we may assume that $e_1 = e_{\infty} + x - Tx$ for some $e_{\infty} \in F_{\infty}$ and $x \in F$. Then

$$\frac{1}{n} \sum_{j=1}^{n} e_j = \frac{1}{n} \sum_{j=1}^{n} T^{j-1} e_1$$

$$= \frac{1}{n} \sum_{j=1}^{n} \left(e_{\infty} + T^{j-1} x - T^j x \right) \text{ by (2) of Lemma 5}$$

$$= e_{\infty} + \frac{1}{n} \left(x - T^n x \right)$$

and

$$\left| \frac{1}{n} \sum_{j=1}^{n} e_j - e_{\infty} \right| \le \frac{1}{n} \left(|x| + |T^n x| \right)$$

$$\le \frac{2}{n} |x|,$$

since T is an isometry on F. This implies that $\frac{1}{n} \sum_{i=1}^{n} e_i \to e_{\infty} \in F_{\infty}$. Define a map $f: F \to \mathbb{R}$ by

$$f\left(\sum_{i=1}^k a_i e_i\right) = \sum_{i=1}^k a_i.$$

Then f is continuous (cf. Proposition 2, [2]) and so there exists M > 0 such that

$$\left| \sum_{i=1}^k a_i \right| \le M \left| \sum_{i=1}^k a_i e_i \right|.$$

Considering $a_i = \frac{1}{k}$, $\left|\frac{1}{n}\sum_{i=1}^n e_i\right| \ge \frac{1}{M} > 0$. This implies that $e_{\infty} \ne 0$. We complete our proof of (1).

(2) Suppose that $\frac{1}{n} \sum_{j=1}^{n} e_j$ converges to e in a norm $|\cdot|$. It suffices to show that Te = e where T is the shift on F, by (2) of Lemma 5. Since

$$T\left(\frac{1}{n}\sum_{j=1}^{n}e_{j}\right) = \frac{1}{n}\sum_{j=1}^{n}e_{j+1} \to Te \text{ as } n \to \infty,$$

$$|Te - e| = \lim_{n \to \infty} \left| T\left(\frac{1}{n}\sum_{j=1}^{n}e_{j}\right) - \frac{1}{n}\sum_{j=1}^{n}e_{j}\right|$$

$$= \lim_{n \to \infty} \frac{1}{n}|e_{n+1} - e_{1}|$$

$$\leq \lim_{n \to \infty} \frac{2}{n}|e_{1}|$$

$$= 0$$

Then Te = e. This completes our proof.

PROPOSITION 7. Let (x_n) be a good sequence in X with its spreading model $[F, (e_n)]$ and $x \in X$. Then

- (1) $(x_n x)$ is also a good sequence.
- (2) If (f_n) and (e_n) are not weakly null where $[G, (f_n)]$ is a spreading model of $(x_n x)$, then (f_n) and (e_n) are equivalent.
- (3) If $F_{\infty} \neq \{0\}$, $G_{\infty} \neq \{0\}$ where $[G, (f_n)]$ is a spreading model of $(x_n x)$, then (f_n) and (e_n) are equivalent.

Proof. (1) is obvious.

(2) Let $[F,(e_n)]$ and $[G,(f_n)]$ be the spreading models of (x_n) and (x_n-x) , respectively. We first show that there exists a M>0 such that

$$\left| \sum_{i=1}^{k} a_i e_i \right| \ge M \left| \sum_{i=1}^{k} a_i \right|$$

for all $k \in \mathbb{N}$ and $(a_i)_{i=1}^k \in S_0$. The following result is followed by Rosenthal l_1 theorem and the spreading model property.

Since (e_n) does not weakly converge to zero, it satisfies one of the following properties:

- (1) (e_n) weakly converges to $e, e \neq 0$.
- (2) (e_n) is a nontrivial weak cauchy sequence.
- (3) (e_n) is equivalent to the unit vector basis of l_1 .

First, suppose that (e_n) weakly converges to $e, e \neq 0$. Then for all $k \in \mathbb{N}$ and $n_1 < \cdots < n_k$,

$$\left| \sum_{i=1}^{k} a_i e_i \right| = \left| \sum_{i=1}^{k} a_i e_{n_i} \right|$$

$$= \lim_{n_k \to \infty} \left| \sum_{i=1}^{k} a_i e_{n_i} \right|$$

$$\geq \left| \sum_{i=1}^{k-1} a_i e_{n_i} + a_k e \right|,$$

(i) $\geq \left| \sum_{i=1}^{k} a_i \right| |e|$, because (e_n) weakly converges to e.

Now, suppose that (e_n) is non-trivial weak cauchy. Let e'' be the w^* -limit of (e_n) . Then we get the following inequality and the proof is similar to the first with e'' instead of e.

$$\left|\sum_{i=1}^k a_i e_i\right| \ge \left|\sum_{i=1}^k a_i\right| |e''|.$$

Finally, suppose that (e_n) is equivalent to the unit vector basis of l_1 . Then there exists a N > 0 such that

(iii)
$$\left| \sum_{i=1}^k a_i e_i \right| \ge N \sum_{i=1}^k |a_i| \ge N \left| \sum_{i=1}^k a_i \right|.$$

By (i), (ii) and (iii), there exists M > 0 such that

$$\left| \sum_{i=1}^{k} a_i e_i \right| \ge M \left| \sum_{i=1}^{k} a_i \right|$$

1024

and

$$\left| \sum_{i=1}^{k} a_i f_i \right| = \lim_{\substack{n_1 < \dots < n_k \\ n_1 \to \infty}} \left\| \sum_{i=1}^{k} a_i (x_{n_i} - x) \right\|$$

$$\leq \lim_{\substack{n_1 < \dots < n_k \\ n_1 \to \infty}} \left\| \sum_{i=1}^{k} a_i x_{n_i} \right\| + \left| \sum_{i=1}^{k} a_i \right| \|x\|$$

$$\leq \left| \sum_{i=1}^{k} a_i e_i \right| + \frac{\|x\|}{M} \left| \sum_{i=1}^{k} a_i e_i \right|$$

$$= \left(1 + \frac{\|x\|}{M} \right) \left| \sum_{i=1}^{k} a_i e_i \right|.$$

In a similar way, we can get a constant M' > 0 such that

$$\left| \sum_{i=1}^k a_i f_i \right| \ge M' \left| \sum_{i=1}^k a_i \right|$$

and

$$\left| \sum_{i=1}^{k} a_i e_i \right| \le \left(1 + \frac{\|x\|}{M'} \right) \left| \sum_{i=1}^{k} a_i f_i \right|.$$

Then

$$\left(1 + \frac{\|x\|}{M'}\right)^{-1} \left| \sum_{i=1}^k a_i e_i \right| \le \left| \sum_{i=1}^k a_i f_i \right| \le \left(1 + \frac{\|x\|}{M}\right) \left| \sum_{i=1}^k a_i e_i \right|.$$

(3) Suppose that $F_{\infty} \neq \{0\}$, $G_{\infty} \neq \{0\}$. We note that if $F_{\infty} \neq \{0\}$, then

$$f: F \to \mathbb{R}$$
 by $f\left(\sum_{i=1}^k a_i e_i\right) = \sum_{i=1}^k a_i$

is continuous (cf. [2, Proposition 2]). Then there exists M>0 such that

$$\left| \sum_{i=1}^{k} a_i e_i \right| \ge M \left| \sum_{i=1}^{k} a_i \right| \quad \text{for} \quad \sum_{i=1}^{k} a_i e_i \in F.$$

$$\left| \sum_{i=1}^{k} a_i f_i \right| = \lim_{\substack{n_1 < \dots < n_k \\ n_1 \to \infty}} \left\| \sum_{i=1}^{k} a_i (x_{n_i} - x) \right\|$$

$$\leq \lim_{\substack{n_1 < \dots < n_k \\ n_1 \to \infty}} \left\| \sum_{i=1}^{k} a_i x_{n_i} \right\| + \left| \sum_{i=1}^{k} a_i \right| \|x\|$$

$$\leq \left| \sum_{i=1}^{k} a_i e_i \right| + \frac{\|x\|}{M} \left| \sum_{i=1}^{k} a_i e_i \right|$$

$$= \left(1 + \frac{\|x\|}{M} \right) \left| \sum_{i=1}^{k} a_i e_i \right|.$$

In a similar way, we can get a constant M' > 0 such that

$$\left|\sum_{i=1}^k a_i f_i\right| \geq M' \left|\sum_{i=1}^k a_i\right|$$

and

$$\left| \sum_{i=1}^k a_i e_i \right| \le \left(1 + \frac{\|x\|}{M'} \right) \left| \sum_{i=1}^k a_i f_i \right|.$$

Then

$$\left(1 + \frac{\|x\|}{M'}\right)^{-1} \left| \sum_{i=1}^k a_i e_i \right| \le \left| \sum_{i=1}^k a_i f_i \right| \le \left(1 + \frac{\|x\|}{M}\right) \left| \sum_{i=1}^k a_i e_i \right|.$$

This completes our proof.

The following is the main theorem of this paper.

THEOREM 2. Let X be a Banach space. Then the following are equivalent:

- (1) X has the Banach-Saks property.
- (2) For a good sequence (x_n) in X with its spreading model $[F, (e_n)]$, $F_{\infty} \neq \{0\}$ or $\rho = 0$.

REMARK. The two conditions of (2) of Theorem 2 are mutually exclusive. Let $F_{\infty} \neq \{0\}$. We show that $\rho \neq 0$. We note that if $F_{\infty} \neq \{0\}$,

then $f: F \to \mathbb{R}$ by $f\left(\sum_{i=1}^k a_i e_i\right) = \sum_{i=1}^k a_i$ is continuous (cf. Proposition 2, [2]). Then there exists M > 0 such that

$$\left| \sum_{i=1}^{k} a_i \right| \le M \left| \sum_{i=1}^{k} a_i e_i \right|$$

for $\sum_{i=1}^k a_i e_i \in F$. Considering $a_k = \frac{1}{k}$, $\left| \frac{1}{k} \sum_{i=1}^k e_i \right| \ge \frac{1}{M} > 0$. This implies that $\rho = \lim_{k \to \infty} \left| \frac{1}{k} \sum_{i=1}^k e_i \right| \ge \frac{1}{M} > 0$.

Proof of Theorem 2. Assume that X have the Banach-Saks property. Let (x_n) be a good sequence in X with its spreading model $[F, (e_n)]$. Since X has the Banach-Saks property, there exists a subsequence (x'_n) of (x_n) such that for all subsequence (x'_{n_i}) of (x'_n) ,

$$\frac{1}{k} \sum_{i=1}^{k} x'_{n_i} \to x \in X$$

by Lemma 1.

Suppose that x = 0. Then by Lemma 2, there exists a subsequence (x'_{n_i}) of (x'_n) such that for all $k \in \mathbb{N}$,

$$\frac{1}{2} \left| \frac{1}{k} \sum_{i=1}^{k} e_i \right| - (2 \log_2 k) \frac{1}{k} \sup_n \|x_n'\| \le \left\| \frac{1}{k} \sum_{i=1}^{k} x_{n_i}' \right\|.$$

Since $\frac{1}{k} \sum_{i=1}^k x_{n_i} \to 0$ and $\frac{1}{k} (2 \log_2 k) \to 0$ as $k \to \infty$, $\rho = 0$.

Suppose that $x \neq 0$. By Proposition 7, $(x'_n - x)$ is also a good sequence. Let $[G, (f_i)]$ be a spreading model of $(x'_n - x)$. By Lemma 2, there exists a subsequence $(x'_{n_i} - x)$ such that for all $k \in \mathbb{N}$,

$$\frac{1}{2} \left| \frac{1}{k} \sum_{i=1}^{k} f_i \right| - (2 \log_2 k) \frac{1}{k} \sup_{n} \|x'_n - x\| \le \left\| \frac{1}{k} \sum_{i=1}^{k} (x'_{n_i} - x) \right\|$$

Since $\frac{1}{k} \sum_{i=1}^k (x'_{n_i} - x) \to 0$ and $(2 \log_2 k) \frac{1}{k} \to 0$ as $k \to \infty$, $\frac{1}{k} \sum_{i=1}^k f_i \to 0$ as $k \to \infty$. We first show that $\frac{1}{k} \sum_{i=1}^k e_i$ converges to a non-zero

element in F. Since

$$\left| \frac{1}{k_1} \sum_{i=1}^{k_1} e_i - \frac{1}{k_2} \sum_{i=1}^{k_2} e_i \right| = \lim_{\substack{n_1 \to \infty \\ n_1 < \dots < n_{k_2}}} \left\| \frac{1}{k_1} \sum_{i=1}^{k_1} x_{n_i} - \frac{1}{k_2} \sum_{i=1}^{k_2} x_{n_i} \right\|$$

$$= \lim_{\substack{n_1 \to \infty \\ n_1 < \dots < n_{k_2}}} \left\| \frac{1}{k_1} \sum_{i=1}^{k_1} (x_{n_i} - x) - \frac{1}{k_2} \sum_{i=1}^{k_2} (x_{n_i} - x) \right\|$$

$$= \left| \frac{1}{k_1} \sum_{i=1}^{k_1} f_i - \frac{1}{k_2} \sum_{i=1}^{k_2} f_i \right| \text{ for } k_1 \le k_2$$

and $\frac{1}{k} \sum_{i=1}^{k} f_i$ converges to zero, $\frac{1}{k} \sum_{i=1}^{k} e_i$ converges in F. Let $\frac{1}{k} \sum_{i=1}^{k} e_i \to \widetilde{e}$ in F. Suppose that $\widetilde{e} = 0$. Then by Lemma 2, there exists a subsequence (x'_{n_i}) of (x'_n) such that for all $k \in \mathbb{N}$

$$\left\| \frac{1}{k} \sum_{i=1}^{k} x'_{n_i} \right\| \le \frac{3}{2} \left| \frac{1}{k} \sum_{i=1}^{k} e_i \right| + (3 \log_2 k) \frac{1}{k} \sup_n \|x'_n\|.$$

Since $\frac{1}{k}\sum_{i=1}^k e_i \to 0$ and $(3\log_2 k)\frac{1}{k} \to 0$ as $k \to \infty$, $\frac{1}{k}\sum_{i=1}^k x'_{n_i} \to 0$. We get the contradiction, since $\frac{1}{k}\sum_{i=1}^k x'_{n_i} \to x \neq 0$. Thus $\frac{1}{k}\sum_{i=1}^k e_i$ converges to a non-zero element of $\widetilde{e} \in F$. By (2) of Lemma 6, $\widetilde{e} \in F_{\infty}$ and so $F_{\infty} \neq \{0\}$.

Assume that (2) holds. Let (y_n) be a bounded sequence in X. We show that (y_n) has a subsequence whose arithmetic means converge in X. If (y_n) has a convergent subsequence, the subsequence has a convergent arithmetic means. So we may assume that (y_n) has no convergent subsequence. Then by Lemma 3, there exists a subsequence (x_n) of (y_n) such that (x_n) is a good sequence in X with its spreading model $[F, (e_n)]$. Suppose that $F_{\infty} \neq \{0\}$. Then by (1) of Lemma 6, $\frac{1}{n} \sum_{i=1}^{n} e_i$ converges in F. By (4) of Lemma 5, (x_n) has a subsequence whose arithmetic means converges in norm $\|\cdot\|$.

Suppose that $\rho = 0$. Then there exists a subsequence (x'_n) of (x_n) such that

$$\left\| \frac{1}{k} \sum_{i=1}^{k} x_i' \right\| \le 2 \left| \frac{1}{k} \sum_{i=1}^{k} e_i \right| + (3 \log_2 k) \frac{1}{k} \sup_n \|x_n'\|.$$

Since $\rho = \lim_{k \to \infty} \left| \frac{1}{k} \sum_{i=1}^k e_i \right| = 0$ and $\lim_{k \to \infty} (3 \log_2 k) \frac{1}{k} = 0$, $\frac{1}{k} \sum_{i=1}^k x_i' \to 0$ as $k \to \infty$. This completes our proof.

3. The Schlumprecht space and spreading model

In [9], Th. Schlumprecht introduced the Schlumprecht space S and showed that S is arbitrarily distortable. In [3], the author showed that the Schlumprecht space S is reflexive and not uniformly convex. It is natural to ask the following question.

QUESTION. Does the Schlumprecht space S or its dual space S^* have the Banach-Saks property?

In [3], the author proved that the dual space S^* has the Banach-Saks property by the direct computation. In this paper, we show that the Schlumprecht space S does not have the Banach-Saks property using the spreading model properties.

We need the following lemma and corollary.

LEMMA 8. Let (x_n) be a good sequence in X with its spreading model $[F, (e_n)]$. If (e_n) is a basic sequence in F, then $F_{\infty} = \{0\}$.

Proof. Let $x = \sum_{i=1}^{\infty} a_i e_i \in F_{\infty}$. Then by (2) of Lemma 5,

$$\sum_{i=1}^{\infty} a_i e_i = x = Tx = \sum_{i=1}^{\infty} a_i e_{i+1}.$$

This implies that $a_2 = a_1 = 0$. Continuing this process, we get that $a_n = 0$ for all n and so x = 0. This completes our proof.

COROLLARY 9. Let X be a Banach space. If X has a spreading model isomorphic to l_1 , then X does not have the Banach-Saks property.

Proof. Suppose that X has a spreading model $[F, (e_n)]$ isomorphic to l_1 . Since X has a spreading model isomorphic to l_1 if and only if it has a spreading model whose fundamental sequence is equivalent to the unit vector basis (x_n) of l_1 , we may assume that (e_n) is a basic sequence and there exist M, m > 0 such that

$$m \left\| \sum_{n=1}^{\infty} a_n x_n \right\|_{l_1} \le \left| \sum_{n=1}^{\infty} a_n e_n \right| \le M \left\| \sum_{n=1}^{\infty} a_n x_n \right\|_{l_1}.$$

It suffices to show that $F_{\infty} = \{0\}$ and $\rho = \lim_{k \to \infty} \left| \frac{1}{k} \sum_{i=1}^{k} e_i \right| > 0$ by Theorem 2. Since (e_n) is a basic sequence in F, $F_{\infty} = \{0\}$ by Lemma 8.

Since

$$\rho = \lim_{k \to \infty} \left| \frac{1}{k} \sum_{i=1}^k e_i \right| \ge m \lim_{k \to \infty} \left\| \frac{1}{k} \sum_{i=1}^k x_n \right\|_{L_1} = m > 0,$$

 $\rho > 0$. We complete the proof.

In [6], D. Kutzarova and P. K. Lin proved that the Schlumprecht space S has an l_1 -spreading model. By Corollary 9, [3] and [6], we get the following.

COROLLARY 10. The Schlumprecht space S does not have the Banach-Saks property and its dual space S^* has the Banach-Saks property.

In [8], N. Okada and T. Ito proved that if X is a Banach space of type p for some 1 , then <math>X has the weak Banach-Saks property. We note that the Banach-Saks property and the weak Banach-Saks property are equivalent in a reflexive space. Then by Corollary 10 and [8], the Schlumprecht space X is not of type p, 1 .

If Y is a Banach space with basis (y_i) and if $1 \le p \le \infty$ we say that l_p is finitely block represented in Y if for any $\epsilon > 0$ and $n \in \mathbb{N}$ there is a normalized block $(z_i)_{i=1}^n$ of length n of (y_i) which is $(1+\epsilon)$ -equivalent to the unit basis of l_p^n and we call (z_i) a block of (y_i) if $z_i = \sum_{j=k_{i-1}+1} \alpha_j y_j$ for $i=1,2,\ldots$ and some $0=k_0 < k_1 < \cdots$ in \mathbb{N}_0 and $(\alpha_j) \subset \mathbb{R}$. In [9], Th. Schlumprecht proved that l_1 is finitely block represented in each infinite block of (e_i) , where (e_i) is the unit vector basis of S.

In this paper, our concern is the finitely representability of the Schlum-precht space S. We say that a Banach space X contains $l_1^{(n)}$ uniformly if there exists $\delta > 0$ such that for every $n \geq 1$, we can find x_1, \dots, x_n in X with $||x_i|| = 1$ and $||\sum_{i=1}^n a_i x_i|| \geq \delta \sum_{i=1}^n |a_i|$, for all scalars a_1, \dots, a_n . G. Pisier showed that A Banach space X does not contain $l_1^{(n)}$ uniformly if and only if X has type p, for some p > 1 (Theorem 1, p.313 of [1]).

Since the Schlumprecht space is not of type p, p > 1, we get the following.

COROLLARY 11. The Schlumprecht space S contains $l_1^{(n)}$ uniformly.

Since if a Banach space contains $l_1^{(n)}$ uniformly, then l_1 is finitely representable in it, we get the following.

COROLLARY 12. l_1 is finitely representable in the Schlumprecht space S.

References

- B. Beauzamy, Introduction to Banach spaces and their geometry, North-Holland, New York, 1985.
- [2] A. Brunel and L. Sucheston, On B-convex Banach spaces, Math. Systems Theory 7 (1974), 294–299.
- [3] K. G. Cho, Banach-Saks Property on Schlumprecht's space, (dissertation) (1997), Inha University.
- [4] P. Erdös and M. Magidor, A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc. 59 (1976), 232-234.
- [5] S. Kakutani, Weak convergence in uniformly convex spaces, Tôhoku Math. J. 45 (1938), 188-193.
- [6] D. Kutzarova and P. K. Lin, Remarks about Schlumprecht space, Israel J. Math. 128 (1999), 2059–2068.
- [7] T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53-57.
- [8] N. Okada and T. Ito, Applications of spreading model to regular methods of summabilities an growth rate of Cesàro means, J. Math. Soc. Japan 44 (1992), 591-612.
- [9] Th. Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), 81–85.

Kyugeun Cho Center for Liberal Arts and Instructional Development Myong Ji University Yong-In 449-728, Korea E-mail: kgjo@mju.ac.kr

Chongsung Lee
Department of Mathematics education
Inha University
Inchon 402-751, Korea
E-mail: cslee@math.inha.ac.kr