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NILRADICALS OF POWER SERIES
RINGS AND NIL POWER SERIES RINGS

CHAN HuH, CHOL ON KiMm, EUN JEONG KIM,
Hone KEE KiM, AND YANG LEE

ABSTRACT. Klein proved that polynomial rings over nil rings of
bounded index are also nil of bounded index; while Puczylowski and
Smoktunowicz described the nilradical of a power series ring with
an indeterminate. We extend these results to those with any set of
commuting indeterminates. We also study prime radicals of power
series rings over some class of rings containing the case of bounded
index, finding some examples which elaborate our arguments; and
we prove that R is a PI ring of bounded index then the power series
ring R[[X]], with X any set of indeterminates over R, is also a PI
ring of bounded index, obtaining the Klein’s result for polynomial
rings as a corollary.

1. Introduction

Throughout this note every ring is associative but not necessarily
with identity. Given a ring R we use the following notations: N, (R) is
the prime radical of R and N*(R) is the nilradical (i.e., the sum of nil
ideals) of R; N1(R) is the Wedderburn radical (i.e., the sum of nilpotent
. . . ... Na(R) R
ideals) of R and Nz(R) is the ideal of R with Ni(B) Nl(Nl(R) ).

Given a ring R the following statements are obtained from definitions
and [5, Lemma 5]: (i) N1(R) € N2(R) C N,(R) € N*(R). (ii) For
r € R, we have that » € N;(R) if and only if (rR)™ = 0, and that
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r € No(R) if and only if (rR)™ C Ny(R), where m,n are some positive
integers.

A ring R is said to be of bounded indez (of nilpotency) if there is a
positive integer n such that a™ = 0 whenever a € R is nilpotent. The
least such integer is called the indez of R.

LEMMA 1.1. [6, Theorem 2] Let R be a ring and a € R. If aR is nil
of bounded index then a € Na(R).

Given a ring R we use Ny(R) to denote the sum of nil one-sided ideals
of bounded index in R.

COROLLARY 1.2. If a ring R is of bounded index then
Ny(R) = Na(R) = N.(R) = N*(R).

Proof. Since R is of bounded index, Lemma 1.1 implies Np(R) C
N3 (R). Thus we get the corollary. O

Throughout this note X denotes a nonempty set of indeterminates
over rings. Let R be a ring. The power series ring over R with X
is denoted by R[[X]] when X is commuting, and is denoted by R{X}
when X is noncommuting; if X is singleton, say X = {z}, then we
write R[[z]] in place of R[[{z}]]. Puczylowski and Smoktunowicz proved
that N*(R{X}) = N,(R{X}) for the case of | X| > 2 and N*(R[[z]]) =
N> (R[[z]]) [8, Corollaries 7 and 10]. Therefore it is natural to conjecture
that N*(R[[X]]) = Nz2(R[[X]]) for any set X of commuting indeter-
minates with |X| > 2. We prove that this is also true, using similar
methods to those in [8]; consequently we may extend [8, Corollary 10]
to the general case of | X| > 1. We also study prime radicals of power
series rings over some class of rings containing the case of bounded index.

Given a ring R and a nonempty set X, denote the ring R joined with
identity and the free abelian monoid on X by R! and F(X), respectively.
Note that every element in R[[X]| is of the form 3°, p(x)Tww with
Tw € R. We use R[X] to denote the polynomial ring over R with X a
set of indeterminates; if X is singleton, say X = {z}, then we write R|z]
in place of R[{z}]. Then each polynomial in R[X] is of the form riw; +
rows + - -+ + rpwy, with 7; € R and w; € F(X). As usual we use degw;
to denote the degree of w;, and define the degree of f(X) € R[X] (write
deg f(X)) by the maximal number in {deg w1,deg wo, ... ,deg wy,} and
write min f(X) for the minimal one in {deg w;,deg wa,...,deg wy}.
We start with the following.
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LEMMA 1.3. Let R be a ring, m be a positive integer, and ag(X),

a1(X), ... ,an(X) be power series in R[[X]]. If z is an elememt in X
satisfying ao(X) + a1(X)zF + a2(X)2?* + -+ + an(X)z™ = 0 for all
k > m then ag(X) = a1(X) = = an(X) =0.

Proof. We proceed by induction on n > 0. If n = 0 then ao(X) =0
clearly, so we assume n > 1. By the condition we also have ap(X) +
a1 (X)z?* + ag(X)z* + - + an(X)z?™ = 0 for all & > m. Hence
we get by(X) + ba(X)zk + -+ + bp(X)z("V* = 0 for all k > m with
bi(X) = a;(X)(1 — %)z for ¢ = 1,2,... ,n, after substracting this
from the original one. By induction hypothesis b1 (X) = bo(X) = --- =
b,(X) = 0. Note that 1 — z** is invertible and z* is not a zero-divisor
in R'[[X]]; so we have a1(X) = az(X) = --- = an(X) = 0, proving the
lemma. d

The following two results (i.e., Lemma 1.4 and Theorem 1.5) are
extensions of Lemma 8 and Theorem 9 in [8] to the case with any set of
commuting indeterminates, respectively. Let x be a fixed indeterminate
in X.

LEMMA 1.4. Let R be a ring and a(X) be a power series in R[[X]] such
that a(X)R[[X]] is nil. Then there exist an integer n > 1 and a polyno-
mial f(X) € R[X] such that for each g(X) € R[X] thereisb(X) € R[[X]]
with {a(X)(f(X) + g(X)zdes FX)+1 4 p(X)gdes F(X)+deg s(X))}n —

Proof. We apply the proof of [8, Lemma 8]. Assume that the result
does not hold. Then for any integer n > 1 there is a polynomial g,(X) €
R[X] such that

{a(X)(F(X) + gn(X)a8 FO1 4 p(x)gies SO Hde onlXN3n 2

for all f(X) € R[X] and b(X) € R[[X]]. Take f1(X) = oz with0# a €

R, fari(X) = Fa(X) + gn(X)zde fn(O+1 inductively, and b(X) = 0.

Then we have {a(X)(fn(X) + gn(X)xde8 2 (X+1)}n £ 0 for all n > 1.
If g, r1(X) # O then we have

min (gn41(X)a?% 24100+ > deg fria(X)
> deg (gn(X)at8 IO+,

hence it is obvious that
oz _|_gl(X):Edeg AX)+1 g2(X)xdeg 00+

oo
= ax + Z gk;(X)CEdeg fk(X)+1
k=1
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is a power series in R[[X]] with ascending degrees, say c(X). Conse-
quently we have (a(X)c(X))™ # 0 for all n > 1 since (a(X) fn41(X))"™ #
0, a contradiction to the hypothesis. a

THEOREM 1.5. Let R be a ring and a(X) € R[[X]]. If a(X)R[[X]] is
nil then a(X)R[[X]] is nil of bounded index.

Proof. Let = be an indeterminate in X and suppose that the condi-
tion holds. By Lemma, 1.4 there exist an integer n > 1 and a polynomial
f(X) € R[X] such that for each g(X) € R[X] there is b(X) € R[[X]]
with {a(X)(f(X) + g(X)zE S 4 p(X)gdes /) +deg sXNn = g,
We will show that (a(X)g(X))™ = 0 for every g(X) € R[[X]]. To do
this, we apply the proof of [8, Theorem 9]. First we take arbitrarily
0 # r € R, a positive integer m and a polynomial h(X) € R[X]. Then
we also have {a(X)(f(X) + (h(X) +rz™)zP+! + b(X)2PT9)}" = 0 with
p =deg f(X) and q = deg (h(X) +rz™) > m, substituting h(X) +rz™
in place of g(X). Note {a(X)(f(X) + h(X)zPT1)}" € ™R|[[X]]. Here
since m is arbitrary, we must have that {a(X)(f(X)+h(X)zPTH)}* =0
for all h(X) € R[[X]]. Substituting h(X) by g(X)z* in the preceding
equation, we get {a(X)(f(X)+g(X)z*F+tP+1)}* = 0, where k is any posi-
tive integer; hence (a(X)f(X))™+a1(X)zF P+ +ap(X)z2FH+P+D 4. . .4
-1 (X))~ D&+ | (q(X)g(X))ma™k+P+D) = 0 for some a;(X)’s in
R[[X]]. Since k is arbitrary, it follows that (a(X)g(X))" = 0 by Lemma
1.3, proving that (a(X)s(X))™ = 0 for all s(X) € R[[X]]. O

By Lemma, 1.1 and Theorem 1.5 we obtain the following.

COROLLARY 1.6. Given a ring R,

Na(R[[X]]) = N.(R{[X]]) = N*(R[[X]]).

2. Prime radicals of power series rings

Klein proved that if R is a nil ring of index n then the polynomial
ring over R in one indeterminate is nil of index < n! [5, Theorem 9].
This theorem can be extended easily to the polynomial ring with any
set of commuting indeterminates. In this chapter we improve this result
to the power series ring case. We use ® to denote the tensor product.
First we obtain the following by [5, Proposition 4 and Lemma 8].
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LEMMA 2.1. Let R be a nil ring of index n and I be the ideal of R
generated by the set {a""1 | a € R}. Then I ® C is a nil ring of index
n for any commutative ring C.

We use Z to denote the ring of integers.

COROLLARY 2.2.Let R be a nil ring of index n and I be the ideal of
R generated by the set {a® ! | a € R}. Then I[X] is a nil ring of index
n.

Proof. Since I|X] =2 I ® Z[X], 1[X] is nil of index n by Lemma 2.1.0]
We obtain the following by the same way.

LEMMA 2.3. Let R be a nil ring of index n and I be the ideal of R
generated by the set {a"~! | a € R}. Then I[[X]] is a nil ring of index
n.

Given a nonempty set X recall that we denote the free abelian monoid
on X by F(X). In the following we can extend [5, Theorem 9] for
polynomials to the power series ring case.

THEOREM 2.4.Let R be a nil ring of index n > 2. Then R[[X]] is a
nil ring of index < n!.

Proof. We proceed by induction on n. If n = 2 then ab + ba = 0 for
all a,b € R; hence f(X)? =0 for all f(X)= > ower(x) GwW With ay € R
in R[[X]]. In fact, for any word w € F(X) the coefficient of w, say by,
in the power series f(X)? is the sum of the forms a,aw,; + Gw,Gw, Or
a2, (if any) with w;w; = w = w}. Since R is nil of index 2, by, = 0 for
all w € F(X) showing f(X)? = 0. This gives that R[[X]] is of index
2 = 2!. Now assume n > 2 and apply the proof of [5, Theorem 9]. Let
I be the ideal of R generated by the set {a"* | a € R} and R = R/I.
Then R is nil of index n — 1, so R[[X]] is nil of index < (n ~ 1)! by

the induction hypothesis. Since R[[X]] = ?[[X]] = ?%((—]]]l, we have
F(X)=D ¢ [[[X]] for all f(X) € R[[X]]. Now Lemma 2.3 implies
0= (f(X)DHm = F(X)™. 0

Puczylowski[7] proved that if R[[z]] with # € X is a nil ring then R
is nil of bounded index. Immediately we have that if R[[X]] is a nil ring

then R is nil of bounded index. So we may obtain the following with
help of Theorem 2.4.
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THEOREM 2.5. For a ring R and x € X the following conditions are
equivalent:

(1) R is nil of bounded index;

(2) R|[z]] is nil of bounded index;

(3) R[|z]] is nil;

(4) R{[X]] is nil of bounded index;

(5) R[[X]] is nil.

It is well-known that N.(R[[X]]) € N.(R)[[X]] {2, Corollary 1.2], s
we also obtain the following with the help of [5, Lemma 5}.

COROLLARY 2.6. Given a ring R the following conditions are equiv-
alent:

(1) N.(R) is of bounded index;

(2) N.(R){[X]] is nil of bounded index;
(3) Nu(R)[[X]] is nil;

(4) N.(R)[[X]] = N.(R[[X]]).

REMARK. Corollary 2.6 need not hold for rings whose indices are
not bounded as can be seen by the following example. Let F' be a
field and let V be an infinite dimensional left vector space over F' with
{v1,v2,...} abasis. According to [3, Example 1.1], define A; = {f € A |
rank(f) < oo and f(v;) = a1v1 +---+a; for i = 1,2,... witha; € F}
and let R be the F-subalgebra of A generated by A; and 14, where

R N
N.(R)
{(a1,a2,...,an,b,b,...) | a;,b € Fandn = 1,2,...} C HF by [3

A = Endp(V) is the endomorphism ring of V over F'. Then

Example 1.1], where F; = F for all i. Let e;; be the 1nﬁmte matrlx over
F with (i, j)-entry 1 and elsewhere 0. The following argument is due to
[3, Example 1.1]. Take power series

f(.’l?) =ezt+epr+ -+ 6(2n+1)(2n+2)$‘n + -

and

g(x) = €23 + €45 + v e(2n+2)(2n+3)$n + .-
in N,(R)[[z]]. Then f(z)? =0 and g(z)? = 0; however the coefficients
of (f(z) + g(m))k_are

€1(k+1); €2(k+2)1+ - » En(k+n)y - - - for k = 2, 3,...,
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and so f(z) + g(z) is not nilpotent and f(z) + g(x) ¢ N.(R[[X]]). Con-
sequently f(z) ¢ N.(R[[z]]) or g(z) ¢ N.(R[[z]]), and thus we have
N.(R{z]]) & Nu(R)[[]]- U

By the preceding remark the condition “of bounded index” in Corol-
lary 2.6 is not superfluous.

COROLLARY 2.7. Let R be a ring and I be a one-sided ideal of R.
Then I is nil of bounded index if and only if I[[X]] C N,(R[[X]]).

Proof. (Necessity) If I is nil of bounded index, then so is I[[X]] by
Theorem 2.4; hence I[[X]] is contained in N, (R[[X]]) by Lemma 1.1 and
Corollary 1.6. (Sufficiency) If I[[X]] C N.(R[[X]]) then I[[X]] is clearly
nil and so I is nil of bounded index by Theorem 2.5. |

We next consider other useful conditions under which N, (R)[[X]] =
N, (R[[X]]) holds.

LEMMA 2.8 [4, A Theorem of Nagata-Higman, Appendix C].Let R
be a nil algebra of index n over a field of characteristic zero or a prime
p > n. Then R is nilpotent with R?"~1 = 0.

By Corollary 2.6 and Lemma 2.8 we have the following.

COROLLARY 2.9. Let R be an algebra over a field K of characteristic
zero. Then the following conditions are equivalent:

(1) N.(R) is of bounded index;
(2) N.(R) is nilpotent;

(3) N (R)[[X]] is n11potent
(4) Nu(R)[[X]] = N.(R[[X]]);
(5) Nu(R)[[X]] is nil.

Though easy to prove, the following result contains some useful re-
lations between prime radicals of rings and those of their power series
rings, comparing with Corollary 1.6 (i.e., N.(R)[[X]]) = N*(R[[X]]) =
N>(R[[X])) for any ring R).

PROPOSITION 2.10. Let R be a ring.

(1) If Nu(R)[[X]] = N1 (R[[X]]) then N.(R) = N1(R).
(2) If N.(R) = N1(R) then N,(R) C N.(R[[X]]).

(3) If N.(R) C N.(R[[X]]) then N,.(R) = Na(R).

Proof. (1) If N.(R)[[X]] = N1(R[[X]]) and a € N,(R), then aR[[X]]
is nilpotent and so is aR, implying a € Ny(R).
(2) The proof follows from the fact N1(R) C N.(R[[X]]).
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(3) Assume that N,(R) C N,(R[X]]), and let ¢ € N,(R). Since
N,(R[[X]]) = No(R[[X]]) by Corollary 1.6, (aR[[X]])" € N1 (R[[X]]) for
some positive integer n. Thus for each b € (aR)", bR[[X]] is nilpotent
and so is bR; hence b € Ni(R). Consequently we have a € Np(R),
obtaining N.(R) = Na2(R). O

Every converse of Proposition 2.10 is not true in general by the ex-
amples in the next section. But the converses of (2) and (3) may hold
under some conditions as follows.

PRrOPOSITION 2.11. Let R be an algebra over a field K of character-
istic zero. Then N,(R) = Ni(R) if and only if N,(R) C N,(R[[X]]).

Proof. It suffices to show the Sufficiency by Proposition 2.10(2). If
a € N,(R) and N,(R) C N.(R[[X])), then aR[[X]] is nil subring of
bounded index in R[[X]] by Theorem 1.5; hence aR[[X]] is nilpotent by
Lemma 2.8 and so is aR, implying a € N;(R). O

PROPOSITION 2.12.Given a ring R suppose that N2(R) is of bounded
index. Then the following conditions are equivalent:

(1) No(R) = Ny(R);

(2) N.(R)[[X]] = N.(R[[X]]);

(3) Nu(R) € N.(R[[X]]).

Proof. (1)=(2) is shown by Corollary 2.7 and [2, Corollary 1.2]; while,
(2)=(3) is obvious and (3)=>(1) is obtained by Proposition 2.10(3). O

A ring R is called PI (or a ring with a polynomial identity) if there

is a polynomial f(z1,Z2,...,2Zn) € Z[z1,Z2,...,Zs] With noncommut-
ing indeterminates z1,z2,...,Z, such that at least one coefficient of
f(z1,x2,...,2,) is L or —1 and f(a1,a2,...,a,) = 0 for every a1, a,. . .,

a, in R. The class of PI rings include commutative rings obviously. Klein
proved that if R is a PI ring of bounded index then so is the polynomial
ring over R [5, Theorem 12]. In the following we extend this result to
power series rings with any set of indeterminates.

THEOREM 2.13. If R is a PI ring of bounded index then the power
series ring R|[ X)) is also a PI ring of bounded index, where X is any set
of indeterminates over R.

Proof. Tt is well known that R[[X]] is PI if so is R. Suppose that R
satisfies a polynomial identity of degree d. Then, by [9, Theorem 6.1.26],
there is a commutative ring C' which is a direct product of fields such
that R/B is isomorphic to a subring of Mat,(C), where B = Ny(R),
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n = [2] (i.e., the largest integer < %) and Mat,(C) is the n by n matrix
ring over C. Thus we have

S = X = Mata C)IX]) = Mat, (C{1X]).
By the Cayley-Hamilton Theorem, Mat,(C[[X]]) is of bounded index;
hence so is };%Eﬁ% by the preceding result. Now since B is a nil ideal of
bounded index, it follows from Theorem 2.5 that B[[X]] is nil of bounded
index. Therefore R[[X]] is of bounded index. O

COROLLARY 2.14. (1) If R is a PI ring of bounded index then the
polynomial ring R[X] is also a PI ring of bounded index, where X is any
set of indeterminates over R.

(2) [5, Theorem 12] If R is a PI ring of bounded index then the poly-
nomial ring R|z] is also a PI ring of bounded index, where x is an
indeterminate over R.

3. Related examples

In this section we find counterexamples which are concerned with the
converses of Proposition 2.10.

ExXAMPLE 3.1. Let K be any field and B = {t, | n =1,2,...} be a
set of noncommuting indeterminates over K. Next set R be the exterior
algebra on B over K, that is, R is an algebra over K generated by the
elements in B subject to the following relations: t;t; = —t;t; for all 4, j
with i # j, and t2 = 0 for all n. Then N,(R) = &3 ,t, R, but this is
not nilpotent. We have the following properties for the ring R:

(1) N.(R) = Ni(R) is a maximal ideal of R with N*}(zR) ~ K.

(2) If the characteristic of K is p # 0 then N,(R) is of index p and
so Corollary 2.6 implies N, (R[[X]]) = N.(R)[[X]].

(3) R is commutative if and only if K is of characteristic 2.

(4) If K is of characteristic zero then N,.(R) is not of bounded in-
dex by Lemma 2.8. Thus we have N,(R[[X]]) = N2(R[[X]]) &
N.(R)[[X]] by Corollary 2.6 and N1 (R[[X]]) & N.(R)[[X]].

Therefore for any field of characteristic zero, constructing an exterior al-

gebra over it as above gives a counterexample to the converse of Propo-
sition 2.10(1), by properties (1) and (4).
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Next to construct counterexamples for the converses of Proposition
2.10(2, 3), we refer to the example of Amitsur [1]. Let K be a field and
R be the exterior algebra on the set B over K as in Example 3.1. Let
T be the ring of Ry by ¥y matrices of the form

A o
r 0 O
0 r O 0 ,
0 0 r
0 r
| 0

|

where r € R, A is an n by n matrix over R for some positive integer n,

and each O is a zero matrix. Denote the identity of T' by 17 and let e;;

be the matrix in T such that (7, j)-entry is 1x and zero elsewhere.
Next let S be the subalgebra of T' consisting of all matrices of the

form
rlr + E Tij€i5 + E G;j€45
1> 1<g

with r,7;; € R and a,;; € N.(R), where each sum is taken finitely. Define
an ideal @ of S by

{alT + Zrijeij -+ Zaijeij | a, aq; € N*(R) and Tij S R}
i>] i<j

and for a given nil ideal I of R define
{blT + Zb,-jeij | b, bij € I} le:t I,

LEMMA 3.2. Let R,S,Q and I' be as above. Then we have the
following properties:
(1) R can be imbedded in S as scalar matrices, i.e., R — S with
g rlT.

S
2 is a maximal ideal of S with — =
e Q¥ N®
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(3) For any nil ideal I of R, I' is an ideal of § with I' C Q; in
particular N,(R) C Q. Moreover I is nilpotent if and only if so
isI'.

(4) N.(R) C N1(S).

(5) @ = N2(S) = Ni(9).

(6) N1(S) & N2(S).

Proof. The proofs of (1), (2) and (3) are obvious from the definitions.

(4) Let w = a + )_aije;; € Nio(R)'. Since N,(R) = Ni(R), there

exists a nilpotent ideal J of R such that a,a;; € J; hence u € J'. But J’
is nilpotent since J is nilpotent, and so u € N;(S) showing the result.
(5) Let p > q be any positive integers. Note that ep,Sepq € {aepq |
a € N.(R)} C N,(R)'. Tt then follows that (e,5)? C N.(R)" C N1(S)
by (4); hence ey, € N2(S) for all such p,g. This result, together with
(4), implies @ C Na(S). But @ is maximal, so we obtain Q@ = Na(S) =
N.(S).

(6) We will show ea; ¢ N1(S), then we get the proof since eg; € Na(S)
by (5). Assume on the contrary that es; € Ni(S), then (ez15)" = 0
for some positive integer n. Since N,(R) is not nilpotent, there ex-

ist elements a1,as,...,a, in Ni(R) such that aia2---a, # 0. Take
sy = areiz € S for each k € {1,2,... ,n}, then aress = €218 € €215
and (ez151)(e2182) - (e218n) = (@102 --an)ezz # 0 in (e2:15)", a con-
tradiction. . [l

The following is a counterexample to the converse of Proposition
2.10(2).

EXAMPLE 3.3. Let K be the field of integers modulo 2. Set R
be the exterior algebra on the set B over K as in Example 3.1 and
S = {T‘].T + Zi>j Tij€i5 + Zigj aij€ij | T € R and ai; € N*(R)} as
in Lemma 3.2. First we have N1(S) & Na(S) = N.(S) by Lemma 3.2(5,
6). Since N,(R)' C N1(S) by Lemma 3.2(4) and N1(S) € N.(S[[X]]),
it suffices to prove that e,, € N,(S[[X]]) for all positive integers p > g.
Note (€3qS)? C epgNi(R)'.

Next we claim that (uv+vu)epy = u?epq = 0 for all u, v € epg N.(R)'.
Let u = aiep1 + Goepa + -+ + apepp + Apt1€ppr1) + -+ + An€pn and
v =biep1 + baepz + -+ + bpepp + bpr1€ppi1) + - + bnépn with a;,b; €
N,(R) and n some positive integer. Then since R is commutative and
N, (R) is nil of index 2, it follows that (uv + vu)epq =0 = u?epq; hence
(uv + vu)epg Nu(R) = uepg N (R) = 0 for all u,v € epgN.(R)'.

If f(X) =2 herx) bww € (epgN+(R)")[[X]], then the coefficient at
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win f(X)?is

2
E (uwl Uw, + u’uizuwl) + Unyg

wiwz=w and w1, w2€F(X)

for any w, where w3 = w (if any). Thus f(X)? = 0 for all f(X) €
(epgN«(R)")[[X]] by the previous argument.
Finally if g(X) € (epgS)[[X]] = epeS{[X]], then

9(X)? € (epgSIIXNN)* S (epgNu(R))[[X]]

and so g(X)® = (g(X)?)® = 0; hence (epyS)[[X]] is nil of index < 6.
This implies that e,, € N.(S[[X]]). Therefore we obtain that N.(S) C
N.(S[[X]]) but N1(S) G N.(5). a

The following is a counterexample to the converse of Proposition
2.10(3).

EXAMPLE 3.4. Let K be a field of characteristic zero. Let R be the
exterior algebra on the set B over K as in Example 3.1 and S, @, N.(R)’
be the same ones as in Lemma 3.2. Then N2(S) = N.(S) by Lemma
3.2(5), but N1(S) & Na(S) by Lemma 3.2(6). So N.(S) € N.(S[[X]])
by Proposition 2.11. O
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