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STRASSEN’S FUNCTIONAL LIL
FOR (-DIMENSIONAL SELF-SIMILAR
GAUSSIAN PROCESS IN HOLDER NORM

Kyo-SHIN HWANG AND ZHENGYAN LIN

ABSTRACT. In this paper, based on large deviation probabilities on
Gaussian random vectors, we obtain Strassen’s functional LIL for
d-dimensional self-similar Gaussian process in Hélder norm via es-
timating large deviation probabilities for d-dimensional self-similar
Gaussian process in Hélder norm.

1. Introduction and results .

The functional law of the iterated logarithm (LIL) for a Brownian mo-
tion (BM), fractional Brownian motions (FBM), Ornstein-Uhlendbeck
(OU) processes and related Gaussian processes have been studied in
various direction. In particular, Strassen[16] proved that as t T oo,

{(—2%; 0<s< 1} is a.s. relatively compact in C[0, 1], with cluster

set equal to the unit ball in a reproducing kernel Hilbert space (RKHS)
connected with a Brownian motion under the sup-norm. The result
was extended to fractional Brownian motions under the sup-norm in
Oodaira[14], and also Monrad and Rootzén[13] refined the Strassen law
of the iterated logarithm for fractional Brownian motions under the sup-
norm. Using Schilder’s theorem giving large deviation estimates for the
Brownian motion with the sup-norm replaced by any Holder norm with
exponent a < 1/2, Baldi, Ben Arous and Kerkyacharian|2] investigated
the Strassen law of the iterated logarithm for Brownian motion under
Hoélder norm. In this paper, based on large deviation probabilities on
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Gaussian random vectors, we obtain Strassen’s functional LIL for d-
dimensional self-similar Gaussian process in Holder norm via estimating
large deviation probabilities for d-dimensional self-similar Gaussian pro-
cess in Holder norm.

Let us denote by Co[0, 1] the Banach space of all continuous functions
f=(f, -, fa):[0,1] = R with value zero at the origin, and let ¢ be
a strictly positive function on [0, 1] with ¢(0) = 0 satisfying

(a) (t) is non-decreasing and ¢(2t) < Ap(t) for 0 <t < 1/2,

(b) [3 (t)/tdt < Ly(8) for 0 < § < 1,

() 8 [} o(t)/t2dt < Mp(8) for 0 < § < 1,
where A, M, L are positive constants. For f € Cg[0,1]%, define the
Hoélder norm

|fi(t) ~ fi(s)]
rp = SU ;N
“f“% ’ r§s<1;.)§v 1??3}(‘1 (P(t - S)

”f”<p = “f“<p,0,1-

For every § > 0 let

_ 1 fi(t) = fi(s)]
mys(d) = 0%?%%1 max T

Then the modulus of continuity for f is ¢(6)ms(5). We shall denote by
C&10, 1]¢ the subspace of Cg[0, 1]¢ of all functions such that lims_.q m ()
= 0. It is clear from [5, 6] that C¢[0, 1] is a closed subspace of Cy[0, 1]¢,
so that it is a separable Banach space endowed with the Hoélder norm
| - |lp, whereas Co[0,1]¢ not.

Let {X;(t);0 <t < o}, j = 1,---,d be independent real-valued
centered self-similar Gaussian processes with X;(0) = 0 and F{X(¢t) —
X;(s)}* = o2(|t — sI), where 0;(t) are positive nondecreasing continu-
ous functions of ¢ > 0. Assume that X;(t) has continuous covariance
function

(L) Rylsyt) = BOGEH0) = [ (@ =1 =14, @),

where the symmetric spectral measure A; satisfies

)\2
/R mAJ(d/\) < 00.
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There exists a centered, complex-valued Gaussian random measure
W;(dX) such that

(1.2) X;(t) = /R (6™ = )W, (dN).

The measures W; and A; are related by the identity E{W;(E)W;(F)} =
A;(ENF) for all Borel sets E and F in R and W;(-E) = W;(E).
Further assume that for j =1,--- ,d,
(i) o;(t) are regularly varying functions of ¢ > 0 with exponent v;
atooforsome0<’yj <1,
(i) lim¢o0;(t)+/log(1/t)/e(t)
(iii) 0;(t) —o;(s) < 0;(t — ) for 0 S s <t < o0.
Let X(t) = (X1(t),--- , Xa(t)) € R4t € [0,00), be a d-dimensional
self-similar Gaussian process. Noting that the modulus of continuity of
X;is \/ 202(h)log(1/h) and using condition (ii), the sample paths of X

are p-Holder continuous. Hence we may consider X 4(t) as a random
variable taking values in Cg[0, 1]¢.

Let H(R) = ®?=1H (R;) C CZ[0,1]% be the RKHS with reproducing
kernel (r.k.) function R(s,t) = ®?=1Rj(3,t), endowed with the inner
product .

d
(f,9HER = Z(fjagj>H(Rj)a
j=1
where H(R;) is the RKHS corresponding to r.k. function R;(s,t) =
E{X;(s)X;(®)}, 0 <s,t <1, and let us define the set K by

K={he HR) : |hlmr <1},

where | - || () denotes the norm of H(R), then H(R) is the RKHS cor-
responding to the centered Gaussian measure p on the separable Banach
space C¢[0,1]¢ induced by {X%(t);t > 0}, and the set K is the unit ball
of H(R).

Throughout this paper for £ > 0, define

K, = {ge C’ff[O,l]d : figf(”g—f”w <5},

and for 0 < T < oo, define

Zr(z) =np' X% 2T), 0<=z<1,
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where

nr = {20*2(T) loglogT}l/2 and ¢*(T) = max o;(T).

Our main theorem is as follows:

THEOREM 1.1. With probability one {Z1(x);0 <z <1,T > 3} (as
T — 00) is relatively compact in C£[0,1]¢, and the set of its limit points
is K, specifically, we have

(1.3) lim inf ||Zr(:) = f(:)|l, =0 as.

T—oo fEK
and for any f € K

(1.4) Jim [1Z7() = fO)lle =0 as.

REMARK. Let p > 1, for f = (f1,---, fa) € C{[0,1]¢, define norm

1/p
| fllie = supp<z<1 (Z?zl \f; (m){p) . By the definition of the Holder
norm ||-||,, clearly, for any f € C$[0,1]¢, we have || f||i» < d||f]|,- Thus,
the convergence in norm || - ||, implies the convergence in norm -l

COROLLARY 1.1. Let p > 1. Then, with probability one {||ZT( MNies
0<z<1,T >3} (asT — oo) is relatively compact in Cy[0,1]%, and
the set of its limit points is {||f(z)|i»;0 < z < 1, f € K}, speciﬁcal]y,
we have

Tlgnoo;gf{osup Zr (@) = I/ (@)]ir] =0 ass.

and for any f € K

lim | sup_ ||lZT( e = [ F(@)[lir] =0 as.
T—+ooo

COROLLARY 1.2. Let p > 1. Then we have

a.s.

| X T ||ew d@ P/ if 1 <p<2
m =
T—oo \/20*%(T) loglog T 1, if p>2
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2. Application to FBM

Throughout this section we let X%(t) = (X1(t),---, Xa(t)) € R%,t €
[0,00), be a d-dimensional FBM with X¢(0) = 0, i.e., {X;(t);t > 0},
j=1,---,d, are independent real-valued Gaussian processes with mean
Z€ro, statlonary increments, X;(0) = 0 and covariance function

R;(s,t) = B{X;(s)X;()} = 5 (IsI™” + [t — |s — ¢[*")

| —

and representation
X,(t) = / —{lx |27"‘1)/2—|m|(2”'1)/2}dBj(x)

where
() 0 <y <1, k2= / {Jo — 1B 702 g *v D) 20,
Rl
b) {B;(t),—0c0 <t < 00} is a BM,
(c) kl{lzv - t\(%"_l)/z — ]x|(27"_1)/2} is interpreted to be I(g 4 when
5

v; =1/2, ie., X; is a BM.
Put
X4zT)

V2T loglog T

There are a lot of papers in the literature to investigate limit behaviors
of BM and FBM under sup-norm or Hélder norm. Chen[4], Goodman
and Kuelbs[7], Monrad and Rootzén[13] and Oodaira[14] studied func-
tional LIL and their convergence rates for FBM in the sup-norm. Also
Baldi and Roynette[3], Kuelbs and Li[11], Kuelbs, Li and Shao[12] and
Wei[19] studied limit behavior of BM and FBM under Holder norm.
The following Theorem 2.1 is Strassen’s functional LIL for FBM under
Holder norm and generalizes the related results for BM (see (2, 4]).

Yr(z) = 0<z<1.

THEOREM 2.1. Let K be defined as in Section 1 and let o(t) = t,
|-lle =1l lo and 0 < & < 7«. Then we have

Jim inf [Yr()~ f()la =0 as.
and for any f € K
Jim [Yr() = fO)lla =0 as,
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where vy, = min{v;,7 =1,---,d}.

REMARK. If y; =1/2 (j =1, .-+ ,d), then Theorem 2.1 is the results
of Bladi, Ben Arou and Kerkyacharian[2]. For any f € C£[0,1]¢ with
o(t) = t%, we have || fllco < ||f]la- Since the convergence in || ||, implies
the convergence in sup-norm | - ||eo, Theorem 2.1 generalizes Strassen’s
results(16].

3. Large deviation probabilities for Gaussian random vectors

Let B* be the topological dual of B with norm || - || and X be a
centered B-valued Gaussian random vector with law p = £(X). It is
well-known that there is a unique Hilbert space H, C B (also call the
RKHS generated by i) such that u is determined by considering the pair
(B, H,) as an abstract Wiener space (see [8]). The Hilbert space H, can
be described as the completion of the range of the mapping S : B* — B
defined by the Bochner integral

Sy = /B £f(2)dulz), f€ B,

where the completion is in the inner product norm
<88, >u= [ f@ola)duta), f.g€ B

We use || - ||, to denote the inner product norm induced on H,, and
for well known properties and various relationship between p, H,, and B
refer to [9, 10]. Let {ax, k > 1} be a sequence in B* orthonormal in L?()
and {A,,,k > 1} is a CONS in H,, defined by A, = [5 rar(z)du(z),
then the operators defined by

(3.1) Iy(z) = Zak(x)Aak and Qu(z) =z — ()
k=1

are continuous mappings from B to B. Furthermore, when restricted to
H,, Tl and Qg are orthogonal projections onto their ranges. It is also
known [9] that for centered Gaussian measure p, limg_.o |Qa(X)|| =0
with probability one, and

(3.2) EfQa(X)[ L0 as dT oo

The following Proposition 3.1 is a large deviation inequality on Gauss-
ian random vectors (see [7, 17)).
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PRrRoOPOSITION 3.1. Let X be a centered Gaussian random vector with
values in B. Let Q4(d > 1) be the linear operators of (3.1), and U, =
{fe€H,:|fll, <a}, where a > 0 and H, is the RKHS with p = L(X).
Let dy (A > 1) be an integer such that

(3.3) dy > inf{m > 1: E||Qn(X)||/m < 27log A/A},

and ey = ydylog A\/)\? with some constant v > 37, where T = sup,cy;,
|lz||. Then for any € > ey (where € may depend on A)

(3.4)
X
P15 -1ze)
1 ol (aX(14+e)? dy—1., (ar1l+ 5))ze>
= 27r(d>\+1)ep( 3ty e

for any A > Ao with some Ao > 0.

4. Proofs

To prove our theorem we need several lemmas. The following lemma
4.1 is a modified version of Proposition 3.1 on a d-dimensional Gaussian
process in the Holder norm.

LEMMA 4.1. Let dy and ¢, be defined as in Proposition 3.1 and K
as in Section 1 with B = (|0, 1]d. Then for any € > €y (where € may
depend on A) we have

|1 X4
P{flg‘i - f() 26}
(4.1) , e \ 2
com (B

for any A > Ao with some )\g > 0, where C is an absolute constant.
Particularly, if ¢ is independent of A, we have

> s} < Cexp (—M) .

’Xdc)
A

feEK

(4.2) P{ inf —f0)

©
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Proof. The proof is straightforward form Proposition 3.1. |

LEMMA 4.2. Let K be defined as in Section 1, then for every ¢ > 0
and 0 > 0 there exist Qy with P(Qp) = 1 and ng = no(w), w € Qo such
that Zg-(-) € K. for every n > ng.

Proof. Let K¢ = {g € C§[0,1)% : infsck || f—gll, > €}. By the Borel-
Cantelli lemma, it is sufficient to prove that P{Zg» € K¢} is summable.
By Lemma 4.1, we have

P{Zon € K£} = P{int 1 Zon — fll, > ¢)

2
< Cexp{—g—(ig—ﬂ—loglogw}

= C(nlog 9)_(1+6)2
and the right hand side is summable. U

LEMMA 4.3. Set

di,,.\ _ Yd(pn.
Y,— sup X% (ur) = X0
or<u<ontt /20*2(6") log log "

For every € > 0 there exists §. > 1 such that for every 1 < 0 < 6, there
exists ng = ng(w) such that Y, (w) < ¢ for every n > ng.

Proof. Note that condition (ii) implies that there is 0 < ¢ < oo such
that

(4.3) os(®)/et) < c

for any 0 < t < 1 and by the scaling property of self-similar, the defini-
tion of || - ||, and condition (iii) of o;(:),

sup [|X () — X(6™ ),

gnsusgn+l
Xi(ut) — X; —(X,;(0™) — X, (6™
— sup sup max | X (ut) j(us) — (X;(0™t) 5(67s))]
gn <u<gn+l 0<s<t<1 1<I<d o(|t — s|)
—  sup  sup  max (20 = g)IX;() - X,(0)))
O <u<hntl 0<s<t<1 155<d o(|t — s|)
< sup sup  max o5([t = s X (u) — X;(6%))]
T pn<u<hn+l 0<s<t<11<5<d (|t — s)

<c¢ sup max |X;(u) - X;(07)|

gn<u<gn+i1ss<d
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Following the same lines of the proof of Lemma 2 in Ortega[l5], we
have that for any € > 0 there exists a positive constant C = C, such
that

P{ sup sup |X;(t+s)— X;(t)] > :wj(h)}
(4.4) 0<t<T 0<s<h

< O exp(-2?/(2+€))

forany T, 0 < h < T and = > z¢ with some zp > 0. So we have, by
(4.4)

sup >
on<u<on+l \/20*2(0") log log O™

X0 = X0 o

su max
{eﬂgug%nﬂ 1<j<d \/50*2(9”) loglog 6™ }

1X%(w) = X940y }

1<u/gn<g 1<i<d v2loglog 6™ -
X:(2)—X;(1
sup max 1%;(2) sl > £ 210g10g9"}

1<z<91<i<d  0;(0 —1) co* (0 —1)

wp  max /) =X /C}

< ZP{ sup |XJ(10J;(0)_ 1))(](1” > £ \/210glog9"}

0<s<6-1 ~co*(f—1)

1 2¢? 1
<c - log log 6"
= d9—1exp{ 2tecg(9-1) © }

1 1 (nlog §)~="/(2¢%e**(0=1))

D

Hence, given & > 0 we can take 6 > 1 such that €2/(2c?a*2( — 1)) > 1,
so we have

> P{Y, >} <o

n>1

and by the Borel-Cantelli lemma, the proof is complete. ]

We shall also need the following lemma (cf. [13]).
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LEMMA 4.4. Let V be a convex, symmetric, measurable subset of B.
Then for all f € H,

Wf 4 V) 2 vy esn {31512 |

PROOF OF THEOREM 1.1.
Proof of (1.3). Put T,, = 6™ with # > 1. For large T, there exists T,
such that T,, <T <7T,,;. We have

int 1Zr() = £O)l,

< sup |[Z7() = Zr, ()l + inf [1Z2,() = FO)lle
T <T<Tp11 FEK
(45) sup |XHT) = X4UTu)lly

T, <T<Tnt1 +/20*2(T},)loglog Ty,

—IXUT o + Juf 121, — £l

nr Nr,

+ sup
Tn<T<Th41

Now, for given € > 0 if 6 > 1 is near enough to one, by Lemma 4.3,
we have
[X4T) = XL )l

4.6 lim su su <e a.s.
(46) n—»ooanngan+1 \/20*2(Tn)1oglong

As for the second term in the right hand of (4.5), | X*(T)|o/nT,. —
1 as. as n — oo by Lemma 4.2 and, by condition (i) of ¢;(-) and the
property of a slowly varying function

1 1

nTn nTn +1

<1-0"2",

lim 7r,
n-—00

Thus if 8 is chosen to be close enough to 1, then we have

1 1

(4.7) lim sup
T 7,

n—00 Tn STSTTL+1

IX4To)lly <€ as.

Combining (4.5) with (4.6), (4.7) and Lemma 4.2, we obtain

o ]
Jdim it 1 Z0()~f (), =0 as
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Proof of (1.4). Let f € K. For § > 1, alsolet T, = 6" and T, < T <
T,+1. We have

(4.8) 1Z2r()=fCO)lle < sup  |[Zr()=Zr. ()l +11 21, ()= F C)lle-

W <T<Tny
By (4.6) and (4.7), for given € > 0 and 6 near enough to 1, we have

(4.9) limsup sup || Zr(:) — Z1,()ly <€ as.
n—oo TnSTSTn-}-l

It is sufficient to prove that
(4.10) limsup || Zr1,(-) — f(:)|lp =0 as.
From (1.1) and (1.2), for j =1,--- ,d,
(411)  oi(h)=2 / (1= cos(BA)A;(dN), 0<h<1.
R
Then there exists a constant K > 0 such that for all 0 < h < 1
(4.12) | / Aj(d)) < Ko?(h)
|A>1/h
and

(4.13).' / IAIPA;(dX) < Kh203(h) (see [13] and [18])
IAI<1/R

Let dp = ™17 s, = n""/2? withn > 1 and 0 < r < 1. Define for
n=12---and 0<t<1

(4.14)
xM() = (¢ — )W, (dN), XM () = X;() - X7 (@),
p‘le(dn—hdn]
¥ (h, 1) = / (" — 1)W,(d\) and
p‘lg(hdn-—-lahdn]

YO ) = (XM (@), -, X)), Y™y = XM @), X 0).

Then {X ](.") (t)}, n=1,2,--- are independent and, by self-similarity of
X;, for any h > 0,

(4.15) i (R)XM () B ™ (b, ).
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By the standard Borel-Cantelli augments, (4.10) follows if we prove that

x (n)(T..
(4.16) ZP{HYT(Tn)—f(') ga}zoo
n=1 n 4
and
o Y(”)(Tn-)
(4.17) nzz:lP —77Tn . >ep <00

since the events in (4.16) are independent. By Lemma 4.4, we have, for

any € > 0,
Ss}
@

Y™(T,.) o
P{ | 1)
=P {‘ —% — f(-)v/2loglog T,

exp { - |/} loglog Tr } P {]

7

< 6\/2loglong}

Y ®)(T,)
o*(T)

> Cexp{—loglogT,} = C(nlogh)~!

v

< e+/2log long}

7

for large enough n and C is a constant, so we obtain (4.16). From
condition (i) of ¢;, there is 0 < v < 1 such that

(4.18) o;(lh) < 21'Yo;(h)
for small 0 < h < 1 and ! with 1 <1 < 1/h. By (4.12), (4.13), (4.18)

and nondecreasity of o, we have

Var(f/j(n)(sn,t)) = 2/ (1 — cos(sntA))A;(dN)
|)‘|¢(5ndn—ly5ndn]
< 2/ s2t2X2A;(d)N) +4/ Aj(dN)
IA<sndn—1 IAI>snd,

< Kspda 1072 (sn/(shdn—1)) + Ko3 (sn/(s%dn))
< Kn™?70% (sn) + Ko? (sn/(shdn-1))

< K(n—2ur + n—2(1—u)(1—r))0_]2(8n)

< Kn_éa?(sn)
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for large n > 1 and 0 < t < 1, where § = min{2(1 — v)(1 —r),2vr}
and K is a constant which differs from lines to lines. Therefore, for any
$n >0 and for every 0 < |t —s| < h <1,

Var (Y™ (s, 1) — ¥ (sn,8)) < 537 (R)?,

where 53(-") (h)? = min{o?(h), Kn~%0}(sn)}. Since X; has self-similarity,
i.e., for any h > 0, X;(h-) 2 o;(h)X;(-), it is clear that, from (4.14),
XM (h) B o5 () XM (). By (4.15), (4.4) and (4.3), we have

(T .
P (Tn-) .
NT. o
<P ’X’(n)(y)_&(n)(x)} > ey/2loglog T,
max su 3 0og 10
= 1SJ'Sd0§z<1;§1 oy —z) - B8 n
(93(9) - 03D | X (1)
< P su > ey/2loglogT,
B EE 0<oy<1 oy — ) B Bl

o;(y - 2) | X ()|

= Pl > £4/2loglog T,
1<Z'<d 0<z<y<1 o(y — ) \/——g—
<<
- Z b ’Y](n)(sn,l)‘ g . S
Bl - oglog iy
1<j<d Kn=302(sp) eVKn=%
2 nd
< Cexp <—2+ ﬁloglong>
e
= - 1
Cexp ( 2Rk log(n log 9))
£2
= C(nlog) z7x"
for large enough n, and we obtain (4.17). Hence (1.4) is proved. 0O
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