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ALMOST SURE CONVERGENCE FOR
WEIGHTED SUMS OF NEGATIVELY ORTHANT
DEPENDENT RANDOM VARIABLES

Mi-Hwa Ko AND TAE-SuUNG Kim

ABSTRACT. For weighted sum of a sequence {X, X,,n > 1} of iden-
tically distributed, negatively orthant dependent random variables
such that | X|",r > 0, has a finite moment generating function, a
strong law of large numbers is established.

1. Introduction

The history and literature on the strong laws of large numbers is
vast and rich as this concept is crucial in probability and statistical
theory. The literature on concepts of negative dependence is much
more limited but still very interesting. Lehmann(7] provided an exten-
sive introductory overview of various concepts of positive and negative
dependence in the bivariate case. Negative dependence has been par-
ticularly useful in obtaining strong laws of large numbers(see [3, 8, 9,
10]). The almost sure limiting law of weighted sums 3 | a,; X;, where
{X, X;,i > 1} is a sequence of i.i.d. random variables with EX = 0
and {an;,1 < i < n,n > 1} is an array of weights, was investigated by
many authors(see, Bai and Cheng[1l], Chow and Lai[4]). For uniformly
bounded weights {an;,1 < i < n,n > 1} and i.i.d. random variables X;
with EX = 0, Teicher[11] obtained

n
(1) lim Zam-Xi/bn =0 as.

i=1
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at a rate b, = n/%log n for 1 < a < 2, and Chow and Lai[4] consid-
ered the case of sup,(n™1 Y | |ani|*) < oo for some a > 0. A strong
law of the form (1) with more general normalizing constants b, was also
obtained by Cuzick[5] under condition sup, (n™* >, |am~|°‘)§ < oo for
some 1 < a < co. Recently, Bai and Cheng(l] derived the follow-
ing strong law of large numbers by considering a standard case when
|X|", 0 < r, has a finite moment generating function: Let {X, X;,i > 1}
be a sequence of i.i.d. random variables with EX = 0 and

(2)  E{exp(h|X|")} < oo for some h > 0 and some r > 0

and let {an;,1 <7 < n} be an double array of real numbers such that,
forl<a<oo

n

(3) Ay =limsup Agpn < 00, A, = n~! Z |an;|“.
nee i=1

If (2) holds and (3) holds for a € (0,2), then, for 0 < a < 1 and

b, = n'/*(logn)'/"

(4) lim sup <h VA, as.,

n—oo

n
Z aniXi/bn
=1

moreover, for 1 < a < 2, b, = n'/%(log n)(t/nNtrl@-1/e(+r) and EX =
0, we have

n
(5) JLIEOZG"iX"/b" =0 a.s.

i=1
In this paper, we study the similar almost sure limiting behavior on the
weighted sums of identically distributed and negatively orthant depen-
dent(NOD) random variables of the form (1) under stronger condition
on the moment generating function

(6) E{exp(h|X|")} < oo for any h > 0 and any r > 0.

2. Preliminaries

This section will contain some background materials on negative or-
thant dependence which will be used in obtaining the major strong law
of large numbers in the next section.
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DEFINITION' 2.1.(Lehmann([7]) Random variables X and Y are neg-
atively quadrant dependent(NQD) if

(7) P{X <2,Y <y} < P{X <z}P{Y <y}

for all z,y € R. A collection of random variables is said to be pairwise
NQD if every pair of random variables in the collection satisfies (7). It
is important to note that Definition 2.1 implies

(8) P{X >zY >y} < P{X >z}P{Y >y}

for all z,y € R. Moreover, it follows that (8) implies (7), and hence,
they are equivalent for pairwise NQD.

DEFINITION 2.2.(Ebrahimi and Ghosh[6]) The random variables X7,
X, -+ are said to be
(a) lower negatively orthant dependent(LNOD) if for each n

(9) P{X1<my, ,anxn}gf[P{Xi < i}
=1
for all z1,--- , 2, € R, Z
(b) upper negatively orthant dependent(UNOD) if for each n
(10) P{Xi >z, , Xn>zp} < ﬁP{Xi >z}
i=1
for all z1, -+ ,z, € R,

(c) negatively orthant dependent (NOD) if both (9) and (10) hold.

REMARK. Ebrahimi and Ghosh[6] showed that (9) and (10) are not
equivalent for n > 3. Consequently, the above definition is needed to
define sequences of negatively dependent random variables.

The following properties are listed for reference in obtaining the main
results in the next section. Detailed proofs can be found in [6] and [7].

LeMMA 2.3. If {X,,n > 1} is a sequence of NOD random variables
and {fn,,n > 1} is a sequence of Borel functions all of which are mono-
tone increasing (or all monotone decreasing), then {f.(X,),n > 1} is a
sequence of NOD random variables.

THEOREM 2.4. Let X;, Xo, -+, X,, be nonnegative random variables
which are upper negatively orthant dependent. Then

(11) E (ﬁ Xi) < ﬁE (X:)
=1 =1
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3. Results

-LEMMA 3.1. Let {X,X,,n > 1} be a sequence of identically dis-
tributed NQD random variables satisfying (6). Let {Xn;,1 <i<n,n >
1} be an array of rowwise NOD random variables with EXp; = 0 for
1<i<mnandn >1, and let {an;,1 < i < n,n > 1} be an array of
positive constants. Assume that, for 1 < ¢ < n, some 0 < 8 < r and
some constant C > 0

(12) |ani Xnil < C|Xil?/logn a.s.

and, for some sequence {uy} of positive constants such that limy .o up, =
0, and some § > 0 and 1 < a < 2,

n

(13) 1 Xni* Y 0 < un | X3/ (logn)* ! as.
=1

Then

(14) lim ) aniXni = 0 as.

i=1
Proof. From the inequality
e <1+z+ %x%lwl for all z € R,
we have
Elexp(taniXn:)] <1+ %t2a,2u-E [X2; exp(tani|Xni])] for any t > 0.

Let € > 0 and put ¢ = 2 (log n)/e. It follows from (12) and (13) and the
fact that for some 7 > 0, any fixed h > 0, there exists a constant D > 0
such that inequality |z|? < D(e"=1’) for all z € R that

Elexp(tan; Xni)]

2
<1+ % (%) (logn)2a’,E [X,%i exp((2/€)(log n)ani| Xnil)]
(15)

<1+ %un(log n)*~® (—fg”—a)
€ - D i1 Gy

x E[(CIX,|°/logn)*~®| Xi|° exp(2/€)C|X;|’]
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2 as, 2
<14 Zun(logn) <n—ma—) E [exp (-C'l lXilﬁﬂ
€ i=1 Oni €

1 o
1+ i(logn) (%)

i=1 "ni

1 a.
exp {i(log n)#z—a}

i=1"ni

IA

IA

for all large n and some C’ > 0 since € > 1+ for > 0.

Next note that, for any ¢ > 0,
(16)

. n n n
Eexp <t Z ame) =F <H exp(tame-)> < H E exp(tan; Xni)
i=1 : i=1 i=1

by Lemma 2.3 and Theorem 2.4. From the Markov inequality, (15) and
(16) we obtain

n n
P (Z AniXng = e) < e kE [exp (tZam-Xm)] T
i=1

=1

n
< gte H E exp(tan; Xn;)

i=1

n
1 ay;
—21
<e Ogngexp{ilognﬁa—}

i=1"ng

(17)

= n_?’/?,

which is summable. Since —X;lis are NOD according to Lemma 2.3, by
replacing X,; with —X,,;, from the above statement we also have

n
(18) P <Z ani(—Xni) > e) < n~3% for all large n.
i=1
Hence, by the Borel Cantelli lemma from (17) and (18) the result (14)

follows. |

REMARK. Lemma 3.1 can be extended to the case where {an;} is an
array of real numbers.

THEOREM 3.2. Let {X,X,,n > 1} be a sequence of identically
distributed NOD random variables with EX = 0 and satisfying (6)
and let {an;,1 < i < n,n > 1} be an array of positive numbers such
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that (3) holds for some 1 < a < 2. Then, for 0 < r < ﬁi and b, =
n/%(log n)/",

n

(19) ZaniXi/bn — 0 a.s.

i=1
Proof. We first observe that

n

2
n
E (Z ani X /bn> < EX*) al,/b}

i=1 i=1

2
n o
< EX? (Z af{i> /b2
i=1
< EXZAz(’nn%/bfl — 0 asn — oo.
It follows that > i ; an;Xi/b, — 0O in probability.
Hence, by Theorem 3.2.1 in Stout[10], it suffices to prove that
n
Zam-Xf/bn — 0 as,
i=1
where {X$} is a symmetrized version of {X,,}. So we need only to prove
the result for {X,} symmetric. Define
X, = X1 (|X1| < (logn)l/’"> — (logn)V/"1 (Xi < —(logn)l/T)
+ (logn)*/r1 <X¢ > (logn)l/’")
and
X;;i =X - X';n'
= (Xi — (log n)l/r) I (Xi > (logn)l/T)
+ (Xi + (logn)l/’”) I (Xi < —(logn)l/r) ,

where I stands for indicator function.
Note that both X;m- and X;;i are NOD by Lemma 2.3 and that

(20) X0l < 1T (1X:] > (1ogm)/7) .
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Since
Eexp|X|" < 00 & ZP (anl > logl/rn) < 00
n=1
we have
(21) P(|1X.;| > (logi)*"i.0) = 0

by the Borel-Cantelli lemma. It follows from (20) and (21) that

n n
S 1l < 31Xl (161 > (logm)7)
i=1 i=1
22 L
. < 371X (1% > (og )
i=1
< oo,

that is, S, | X,;| is bounded a.s. It follows that
n n

e <503

i=1 i=1

n
1 "
< b " max |ap; E X .
— n lﬁzgnl nl' — nt
i

bt

”
anani

n ) é n "
< b (Damw) >
=1 =1

n
< Aan Y| X0

i=1

/(logn)Y™ — 0 a.s. as n — co.

To complete the proof we will apply Lemma 3.1 to the random variable
X, and weight b, a,;. Note that

by ani X | < b7t |ani| (logn) 7/ | X4

1
< byt (Z |am1“) (log n) ="/ | X"
=1

< b;lAa,nnl/a(log n)(l—r)/r|Xi|r
= Aapn|X;|"/logn
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and

’

| X Xoa| " A%/ (log n)*"

a n
S bl =

i=1
< A% Xl /(logm)",

which satisfy conditions (12) and (13) of Lemma 3.1. Hence, we have

n
(24) > aniXpi/bn — 0 as.
i=1
and the desired result follows by (23) and (24). O

REMARK. If (19) holds for any array {an;} satisfying (3), then EX =
0 and (6) holds. The proof is similar to that of Bai and Cheng ([1],
108-109): Suppose (19) is true for any weights suquence satisfying (3).
Choose, for each n, ap1 = = appn-1 = 0and apn = nl/®. Then, by (19),
we have (logn)~'/"X,, — 0 a.s., which implies that E{exp(h|X|") < oo.

The following theorem is a slight modification of Theorem 3.2. The
theorem shows that if the norming constant b, is stronger than that
of Theorem 3.2, then condition (6) of Theorem 3.2 can be replaced by
weaker condition (2).

TueoreEM 3.3. Let {X,X,,n > 1} be a sequence of identically
distributed NOD random variables satisfying EX = 0 and (2) and let
{ani,1 <i < n,n > 1} be an array of constants satisfying (3) for some
1< a<2. Then, for0<r < % and b, = n/*(logn)/™# (B > 0),

i ani X;/bp — 0 a.s.
=1
Proof. Define
X=X (|X,~| < (h_llogn)l/r>
~ (h"1og 1)1 (X; < — (M logn) ")
+ (hlog n)/" 1 (Xi > (h~log n)l/r)

and X;i = X; — X;n. for 1 < i< mnandn > 1. The rest of the proof is
similar to that of Theorem 3.2 and is omitted. O
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