Anomaly Detection Performance Analysis of Neural Networks using Soundex Algorithm and N-gram Techniques based on System Calls

시스템 호출 기반의 사운덱스 알고리즘을 이용한 신경망과 N-gram 기법에 대한 이상 탐지 성능 분석

  • 박봉구 (호남대학교 정보통신공학과)
  • Published : 2005.10.01

Abstract

The weak foundation of the computing environment caused information leakage and hacking to be uncontrollable, Therefore, dynamic control of security threats and real-time reaction to identical or similar types of accidents after intrusion are considered to be important, h one of the solutions to solve the problem, studies on intrusion detection systems are actively being conducted. To improve the anomaly IDS using system calls, this study focuses on neural networks learning using the soundex algorithm which is designed to change feature selection and variable length data into a fixed length learning pattern, That Is, by changing variable length sequential system call data into a fixed iength behavior pattern using the soundex algorithm, this study conducted neural networks learning by using a backpropagation algorithm. The backpropagation neural networks technique is applied for anomaly detection of system calls using Sendmail Data of UNM to demonstrate its performance.

컴퓨터 네트워크의 확대 및 인터넷 이용의 급격한 증가에 따라 네트워크 서비스 품질의 보장과 네트워크의 관리가 어려울 뿐만 아니라 네트워크 보안의 취약성으로 인하여 해킹 및 정보유출 등의 위협에 노출되어 있다. 특히 시스템 침입의 보안 위협에 대한 능동적인 대처 및 침입 이후에 동일하거나 유사한 유형의 사건 발생에 대해 실시간에 대응하는 것이 중요하므로 침임 탐지 시스템에 대한 많은 연구가 진행되고 있다. 본 논문에서는 시스템 호출을 이용하여 이상 침입 탐지 시스템의 성능을 향상시키기 위해, 특징 선택과 가변 길이 데이터를 고정 길이 학습 패턴으로 변환 생성하는 문제를 해결하기 위한 사운덱스 알고리즘을 적용한 신경망 학습을 통하여 이상 침입 탐지의 연구를 하고자 한다. 즉, 가변 길이의 순차적인 시스템 호출 데이터를 사운덱스 알고리즘에 의한 고정 길이의 행위 패턴을 생성하여 역전파 알고리즘에 의해 신경망 학습을 수행하였다. 역전파 신경망 기법을 UNM의 Sendmail Data Set을 이용하여 시스템 호출의 이상 탐지에 적용하여 성능을 검증하였다.

Keywords