Electrochemical Biosensors for Biomedical and Clinical Applications: A Review

  • Rahman Md. Aminur (Department of Chemistry and Center for Innovative Bio Physio Sensor Technology, Pusan National University) ;
  • Park Deog-Su (Department of Chemistry and Center for Innovative Bio Physio Sensor Technology, Pusan National University) ;
  • Shim Yoon-Bo (Department of Chemistry and Center for Innovative Bio Physio Sensor Technology, Pusan National University)
  • Published : 2005.10.01

Abstract

There are strong demands for accurate, fast, and inexpensive devices in the medical diagnostic laboratories, such as biosensors and chemical sensors. Biosensors can provide the reliable and accurate informations on the desired biochemical parameters, which is an essential prerequisite for a patient before going for a treatment. They can be used for continuous measurements of metabolites, blood cations, gases, etc. Of these, electrochemical biosensors play an important role in the improvement of public health, because rapid detection, high sensitivity, small size, and specificity are achievable for clinical diagnostics. In this paper, the clinical applications with electrochemical biosensors are reviewed. An attempt is also made to highlight some of the trends that govern the research and developments of the important biosensors that are associated to clinical diagnosis.

Keywords

References

  1. D.F. Calbreath, The Scope of Clinical Chemistry, In: Clinical Chemistry. A Fundamental Text book, S. Ozmar Ed., Philadelphia: W.B. Saunders Company, pp. 3-9, 1992
  2. M.C. Linhares and P.T. Kissinger, 'Bioanalytical sample preparation using micro dialysis and ultrafiltration capillaries', TrAC, Trends Anal. Chem., Vol. 11, pp.171-176, 1992 https://doi.org/10.1016/0165-9936(92)87005-5
  3. Z. Trajanoski, P. Wach, , R. Gfrerer, G. Jobst, G. Urban, P. Kotanko, and F. Skrabal, 'Portable device for continuous fractionated blood sampling and continuous ex vivo blood glucose monitoring', Biosens. Bioelectron., Vol. 11, pp. 479-487, 1996 https://doi.org/10.1016/0956-5663(96)86784-4
  4. A. P. F. Turner, I. Karube, and G. S. Wilson, Biosensors: Fundamentals, and Applications, Oxford: Oxford University Press, 1987
  5. J.S. Schultz and R. F. Taylor, Introduction to chemical and biological sensors, In: Handbook of chemical and biological sensors, R.F. Taylor, and J.S. Schultz, Eds., London: IOP, pp. 1-10, 1996
  6. F.W. Scheller, F. Schubert, and J. Fedowitz, Present state and frontiers in biosensorics, In: Frontiers in biosensorics I. Fundamental aspects, F.W. Scheller, F. Schubert, and J. Fedowitz Eds., Basel: Birkhauser Verlag, pp. 1-12, 1997
  7. A. E. G. Cass, T. Cass, J. Cooper, Biosensors: A Practical Approach, Oxford: Oxford University Press, 2004
  8. L. C. Jr. Clark and C. Lyons, 'Electrode systems for continuous monitoring cardiovascular surgery', Ann. N. Y. Acad. Sci., Vol. 102, pp. 29-45, 1962 https://doi.org/10.1111/j.1749-6632.1962.tb13623.x
  9. J. Castillo, S. Gasper, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S. A. Dorneanu, A. D. Ryadov, and E. Csoregi, 'Biosensors for life quality-design, development and applications', Sens. Actuat. B, Vol. 102, pp.179-194, 2004 https://doi.org/10.1016/j.snb.2004.04.084
  10. D. R. Thevenot, K. Toth, R. A. Durst, and G. S.Wilson, 'Electrochemical biosensors: recommended definitions and classification', Biosens. Bioelectron., Vol. 16, pp. 121-131, 2001 https://doi.org/10.1016/S0956-5663(01)00115-4
  11. C.L. Morgan, D. J. Newman, and C.P. Price, 'Immunosensors: technology and opportunities in laboratory medicine', Clin. Chem., Vol. 42, pp. 193-209, 1996
  12. R. Ekins, 'Immunoassay: recent developments and future directions', Nucl. Med. Biol., Vol. 21, pp. 495-521, 1994 https://doi.org/10.1016/0969-8051(94)90073-6
  13. W. Gopel, 'Controlled signal transduction across interfaces of 'intelligent' molecular systems', Biosens. Bioelectron., Vol. 10, pp. 35-59, 1995 https://doi.org/10.1016/0956-5663(95)96793-X
  14. X. D. Dong, J. Lu, and C. Cha, 'Characteristics of the glucose oxidase at different surfaces', Bioelectrochem. Bioenerg., Vol. 42, pp. 63-69, 1997 https://doi.org/10.1016/S0302-4598(96)05140-9
  15. N. Barie and M. Rapp, 'Covalent bound sensing layers on surface acoustic wave (SAW) biosensors', Biosens. Bioelectron., Vol. 16, pp. 979-987, 2001 https://doi.org/10.1016/S0956-5663(01)00198-1
  16. J. Wang, Electrochemical Transduction, In: Handbook of Chemical and Biological Sensors, R. F. Taylor, and J. S. Schultz, Eds. London: IOP, pp. 123-138, 1996
  17. D. Pfeiffer, Commercial Biosensors for Medical Application. In: Frontiers in Biosensorics II. Practical Applications, F. W. Scheller, F. Schubert, and J. Fedowitz, Eds., Basel: Birkhauser Verlag, pp. 149-160, 1997
  18. U. Jonsson, , L. Fagerstam, , B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Lofas, B. Persson, H. Roos, and I. Ronnberg, 'Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology', Biotechniques, Vol. 11, pp. 620-627, 1991
  19. A. Brecht and G. Gauglitz, Reflectometric Interference Spectroscopy for Direct Affinity Sensing. In: Frontiers in Biosensorics II. Practical Applications, F.W. Scheller, F. Schubert, and J. Fedowitz, Eds., Basel: Birkhauser Verlag, pp. 1-16, 1997
  20. L. J. Kricka, 'Selected strategies for improving sensitivity and reliability of immunoassays', Clin. Chem., Vol. 40, pp. 347-357, 1994
  21. J. Joracek and P. Skaladal, 'Improved direct piezoelectric biosensors operating in liquid solution for the competitive label-free immunoassay of 2, 4-dichlorophenoxyacetic acid', Anal. Chim. Acta, Vol. 347, pp. 43-50, 1997 https://doi.org/10.1016/S0003-2670(97)00125-6
  22. W. R. Heineman and H.B. Halsall, 'Strategies for electrochemical immunoassay', Anal. Chem., Vol. 57, pp. 1321A-1331A, 1985
  23. E. Gizeli and C.R.Lowe, 'Immunosensors', Curr. Opin. Biotechnol., Vol. 7, pp. 66-71, 1996 https://doi.org/10.1016/S0958-1669(96)80097-8
  24. A. L. Ghindilis, P. Atanasov, M. Wilkins, and E. Wilkins, 'Immunosensors: electrochemical sensing and other engineering approaches', Biosens. Bioelectron., Vol. 13, pp. 113-131. 1998 https://doi.org/10.1016/S0956-5663(97)00031-6
  25. M. A.Gonzalez-Martinez, R. Puchades, and A. Maquieira, 'On-line immunoanalysis for environmental pollutants: from batch assays to automated sensors', TrAC, Trends Anal. Chem., Vol. 18, pp. 204-218, 1999 https://doi.org/10.1016/S0165-9936(98)00110-1
  26. P. Skladal, 'Advances in electrochemical immunosensors', Electroanalysis, Vol. 9, pp. 737-745, 1997 https://doi.org/10.1002/elan.1140091002
  27. A. F. Chetcuti and D. K. Y. Wong, 'An indirect perfluorosulfonated ionomer-coated electrochemical immunosensor for the detection of the protein humanchronic gonadotrophin', Anal. Chem., Vol. 71, pp. 4088-4094, 1999 https://doi.org/10.1021/ac981216a
  28. C. J. McNeil, D. Athey, and R. Renneberg, Immunosensors for Clinical Diagnosis, In: Frontiers in Bioserisorics II. Practical Applications, F.W. Scheller, F. Schubert, and J. Fedowitz, Eds., Basel: Birkhauser Verlag, pp.17-25, 1997
  29. P.B. Luppa, L. J. Sokoll, and D. W. Chan, 'Immunosesnors-principles and applications to clinical chemistry', Clinica Chimica Acta, Vol. 314, pp.1-26, 2001 https://doi.org/10.1016/S0009-8981(01)00629-5
  30. K. R. Rogers, 'Principles of affinity-based biosensors', Mol. Biotechnol., Vol. 14, pp.109-129, 2000 https://doi.org/10.1385/MB:14:2:109
  31. M. Aizawa, 'Immunoserisors for clinical analysis', Adv. Clin. Chem., Vol. 31, pp. 247-275, 1994 https://doi.org/10.1016/S0065-2423(08)60337-6
  32. A. L. Ghindilis, P. Atanasov, M. Wilkins, and E. Wilkins, 'Immunosensors: electrochemical sensing and other engineering approaches', Biosens. Bioelectron., Vol. 13, pp. 113-31, 1998 https://doi.org/10.1016/S0956-5663(97)00031-6
  33. S. M. Park, Electrochemistry of ${\eth}$-Conjugated Polymers. In: Handbook of Organic Conductive Molecules and Polymers, H. S. Nalwa, Ed., Chichester: Wiley, Vol. 3, Chapter 9, pp 429-469, 1997 and references cited therein
  34. Y. -B. Shim, M.- S. Won, S. M. Park, 'Electrochemistry of conductive polymers. VIII. In situ spectroelectrochemical studies of polyaniline growth mechanisms'. J. Electrochem. Soc., Vol. 137, pp. 538-44, 1990 https://doi.org/10.1149/1.2086494
  35. Y. -B. Shim, D. E. Stilwell, S. M. Park, 'Electrochemistry of conductive polymers. X: polyaniline-based potentiometric sensor for dissolved oxygen'. Electroanalysis, Vol. 3, pp. 31-36, 1991 https://doi.org/10.1002/elan.1140030106
  36. Y. -B. Shim, S. M. Park, 'Electrochemistry of conductive polymers. XXII. Electrochemical and spectroelectrochemical studies of polyazulene growth and its characterization'. J. Electrochem. Soc., Vol. 144, pp. 3027-3033, 1997 https://doi.org/10.1149/1.1837954
  37. M. Gerard, A. Chaubey, and B.D. Malhotra, 'Application of conducting polymers to biosensors', Biosens. Bioelectron., Vol. 17, pp. 345-359, 2002 https://doi.org/10.1016/S0956-5663(01)00312-8
  38. S. Cosnier, 'Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review', Biosens. Bioelectron., Vol. 14, pp. 443-456, 1999 https://doi.org/10.1016/S0956-5663(99)00024-X
  39. Y. T. Lee, Y.-B. Shim, and S. C. Shin, 'Simple preparation of terthiophene-3'-carboxylic acid and characterization of its polymer', Synth. Met., Vol. 126, pp. 105-110, 2002 https://doi.org/10.1016/S0379-6779(01)00556-2
  40. M. A. Rahman, M.-S. Won, and Y.-B. Shim, 'Characterization of an EDTA bonded conducting polymer modified electrode: its application for the simultaneous determination of heavy metal ions', Anal. Chem., Vol. 75, pp.1123-1129, 2003 https://doi.org/10.1021/ac0262917
  41. M. A. Rahman, D. S. Park, S.-C. Chang, C. J. McNeil, and Y.-B. Shim, 'The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions determinations', Biosen. Bioelectron., 2005, in press
  42. M. A. Rahman, D. S. Park, and Y.-B. Shim, 'A performance comparison of choline biosensors:anodic or cathodic detections of $H_2O_2$ generated by enzyme immobilized on a conducting polymer', Biosens. Bioelectron., Vol.19, pp. 1565-1571, 2004 https://doi.org/10.1016/j.bios.2003.12.005
  43. M. A. Rahman, N.-H. Kwon, M.-S. Won, E. S. Choe, and Y.-B. Shim, 'Functionalized conducting polymer as an enzyme-immobilizing substrate: an amperometric glutamate microbiosensor for in vivo measurements', Anal. Chem., Vol. 77, pp. 4854-4860, 2005 https://doi.org/10.1021/ac050558v
  44. F. Darain, S.-U. Park, and Y.-B. Shim, 'Disposable amperometric immunosensor system for Rabbit IgG using a conducting polymer modified screen-printed electrode', Biosens. Bioelectron., Vol. 18, pp. 773-780, 2003 https://doi.org/10.1016/S0956-5663(03)00004-6
  45. F. Darain, D.S. Park, J. S. Park, and Y.-B. Shim, 'Development of an immunosensor for the detection of vitellogenin using impedance spectroscopy', Biosnes. Bioelectron., Vol.19, pp.1245-1252, 2004 https://doi.org/10.1016/j.bios.2003.11.014
  46. F. Darain, D.-S. Park, J.-S. Park, S.-C. Chang, and Y.-B. Shim, 'A separation-free amperometric immunosensor for vitellogenin based on screen-printed carbon arrays modified with a conductive polymer', Biosens. Bioelectron., Vol. 20, pp.1780-1787, 2005 https://doi.org/10.1016/j.bios.2004.07.006
  47. F. Darain, C. Ban, and Y.-B. Shim, 'Development of a new and simple method for the detection of histdine-tagged proteins', Biosens. Bioelectron., Vol.20, pp. 857-863, 2004 https://doi.org/10.1016/j.bios.2004.03.028
  48. Y.-T. Lee and Y.-B. Shim, 'Direct DNA hybridization detection based on the oligonucleotide-functionalized conductive polymer', Anal. Chem., Vol. 73, pp. 5629-5632, 2001 https://doi.org/10.1021/ac015572w
  49. C. Ban, S. Chung, D.-S. Park, and Y.-B. Shim, 'Detection of protein-DNA interaction with a DNA probe: distinction between single-strand and double-strand DNA-protein interaction', Nucleic Acids Research, Vol.32, pp. e 110-e117, 2004 https://doi.org/10.1093/nar/gnh109
  50. P.U. Abel, and T. V. Woedtke, 'Biosensors for in vivo glucose measurement: can we cross the experimental stage', Biosens. Bioelectron., Vol. 17, pp.1059-1070, 2002 https://doi.org/10.1016/S0956-5663(02)00099-4
  51. C. D. T. Bratten, P. H. Cobbold, and J. M. Cooper, 'Single-cell measurements, of purine release using a micro machined electroanalytical sensor', Anal. Chem., Vol. 70, pp.1164-1170, 1998 https://doi.org/10.1021/ac970982z
  52. T.I. Valdes and F. Moussy, 'In vitro and in vivo degradation of glucose, oxidase enzyme used for an implantable glucose biosensor', Diabet. Tech. Therap., Vol. 2, pp. 367-376, 2000 https://doi.org/10.1089/15209150050194233
  53. G. Broder and M.H. Weil, 'Excess lactate: an index of reversibility of shock in human patients', Science, Vol. 143, pp.1457-1459, 1964 https://doi.org/10.1126/science.143.3613.1457
  54. E. Akylmaz and E. Dickaya, 'A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum', Talanta, Vol. 53, pp.505-509, 2000 https://doi.org/10.1016/S0039-9140(00)00517-8
  55. G. Reach and G. S. Wilson, 'Can continuous glucose monitoring be used for the treatment of diabetes', Anal. Chem., Vol. 64, pp. 381A-386A, 1992 https://doi.org/10.1021/ac00030a001
  56. E. Wilkins, P. Atanasov, and B.A. Muggenburg, 'Integrated implantable device for long-term glucose monitoring', Biosens. Bioelectron., Vol. 10, pp. 485-494, 1995 https://doi.org/10.1016/0956-5663(95)96894-5
  57. V. Poitout, , D. Moatti-Sirat, G. Reach, Y. Zhang, G. S. Wilson, F. Lemonnier, and J. C. Klein, 'A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit', Diabetologia, Vol. 36, pp. 658-663, 1993 https://doi.org/10.1007/BF00404077
  58. Y. Hashiguchi, M. Sakakida, K. Nishida, T. Uemura, K. Kajiwara, and M. Shichiri, 'Development of a miniaturized glucose monitoring system by combining a needle-type glucose sensor with microdialysis sampling method. Long-term subcutaneous tissue glucose monitoring in ambulatory diabetic patients', Diabetes Care, Vol. 17, pp. 387-396, 1994 https://doi.org/10.2337/diacare.17.5.387
  59. M. Boopathi, M.-S. Won, Y.-B. Shim, 'A sensor for acetaminophen in a blood medium using a Cu(II)-conducting polymer complex modified electrode, Anal. Chim. Acta, Vol. 512, pp. 191-197, 2004 https://doi.org/10.1016/j.aca.2004.03.005
  60. G.A. Urban and G. Jobst, Biosensors with modified electrodes for in vivo and ex vivo applications. In: Frontiers in biosensorics II. Practical applications, F.W. Scheller, F. Schubert, and J. Fedowitz, Eds., Basel: Birkhauser Verlag, pp. 161-171, 1997
  61. M. Shichiri, N. Asakawa, Y. Yamasaki, R Kawamori, and H. Abe, 'Telemetry glucose monitoring device with needle type glucose sensor: a useful tool for blood glucose monitoring in diabetic individuals', Diabetes Care, Vol. 9, pp. 298-301, 1986 https://doi.org/10.2337/diacare.9.3.298
  62. M. Mascini, S. Fortunati, D. Moscone, G. Palleschi, M. Massi-Benedetti, and P.G. Fabietti, 'An L-lactate sensor with immobilized enzyme for use in in vivo studies with endocrine artificial pancreas', Clin. Chem., Vol. 31, pp. 451-453, 1985
  63. A.Q. Contractor, T.N. Sureshkumar, R Narayanan, S. Sukeerthi, R. Lal, and R.S. Srinivasa, 'Conducting polymars based biosensors', Electrochim. Acta, Vol. 39, pp.1321-1324, 1994 https://doi.org/10.1016/0013-4686(94)E0054-4
  64. M.M. Verghese, K. Ramanathan, S.M. Ashraf, and B.D. Malhotra, 'Enhanced loading of glucose oxidase on polyaniline films based on anion exchange', J. Appl. Polym. Sci., Vol. 70, pp.1447-1453, 1998 https://doi.org/10.1002/(SICI)1097-4628(19981121)70:8<1447::AID-APP3>3.0.CO;2-4
  65. M. R. Rahman, M.-S. Won, Y.-B. Shim, 'The potential use of hydrazine as an alternative to peroxidase in a biosensor: comparison between hydrazine and HRP-based glucose sensors, Biosens. Bioelectron., Vol. 21, pp. 257-265, 2005 https://doi.org/10.1016/j.bios.2004.09.036
  66. T.J. Ohara, R. Rajagopalan, and A. Heller, 'Wired' enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances', Anal. Chem., Vol. 66, pp. 2451-2457, 1994 https://doi.org/10.1021/ac00087a008
  67. A.L. Hart and A.P.F. Turner, 'On the use of screen and ink-jet printing to produce amperometric enzyme electrodes for lactate', Biosens. Bioelectron., Vol. 11, pp. 263-270, 1996 https://doi.org/10.1016/0956-5663(96)88413-2
  68. C.I. Li, Y.H. Lin, C.L. Shih, J.P. Tsaur, and L.K. Chau, 'Sol-gel encapsulation of lactate dehydrogenase for optical sensing of L-iactate', Biosens. Bioelectron., Vol. 17, pp. 323-330, 2002 https://doi.org/10.1016/S0956-5663(01)00287-1
  69. B.F.Y. Yon Hin, and C.R. Lowe, 'Amperometric response of polypyrrole entrapped bienzyme films', Sens. Actuat. B, Vol. 7, pp. 339-342, 1992 https://doi.org/10.1016/0925-4005(92)80320-W
  70. J. Motonaka and L.R. Faulkner, 'Determination of cholesterol and cholesterol ester with novel enzyme micro-sensor', Anal. Chem., Vol. 65, pp. 3258-3261, 1993 https://doi.org/10.1021/ac00070a015
  71. M.A.T. Gilmartin and J.P. Hart, 'Development of one-shot biosensor for the measurement of uric acid and cholesterol', Analyst, Vol. 119, pp. 2331-2336, 1994 https://doi.org/10.1039/an9941902331
  72. H. Kumar, 'Immobilization of cholesterol oxidase on formvar using organic solvents', Biotechnol. Appl. Biochem., Vol. 30, pp. 231-233, 1999
  73. J.C. Vidal, E. Garcia, and J.R. Castillo, 'Development of a platinized and ferrocene mediated cholesterol amperometric biosensor based on electropolymerization of polypyrrole in a flow system', Anal. Sci., Vol. 18, pp. 537-541, 2002 https://doi.org/10.2116/analsci.18.537
  74. G. K. Vengatajalabathy and F. Mizutani, 'Layer-by-layer construction of an active multiplayer enzyme electrode applicable for direct determination of cholesterol', Sens. Actuat. B, Vol. 80, pp. 272-277, 2001 https://doi.org/10.1016/S0925-4005(01)00911-X
  75. A. Brajter-Toth, A. El-Nour, E.T. Cavalheiro, and R. Bravo, 'Nanostructured carbon fiber disk electrodes for sensitive determinations of adenosine and uric acid', Anal. Chem., Vol. 72, pp. 1576-1584, 2000 https://doi.org/10.1021/ac9906680
  76. S. Uchiyama, H. Shimizu, and Y. Hasebe, 'Chemical amplification of uric acid sensor responses by dithiothreitol', Anal. Chem., Vol. 66, pp. 1873-1876, 1994 https://doi.org/10.1021/ac00083a016
  77. R. Bravo, C. Hsueh, A. Jaramillo, and A. Brajter-toth, 'Possibilities and limitations in miniaturized sensor design for uric acid', Analyst, Vol. 123, pp. 1625-1630, 1998 https://doi.org/10.1039/a802341g
  78. W.J. Cho and H.J. Huang, 'An amperometric urea biosensor based on a polyaniline-perfluorosulphonated ionomer composite electrode', Anal. Chem., Vol. 70, pp. 3946-3951, 1998 https://doi.org/10.1021/ac980004a
  79. U. Fischer, S. Alcock, and A.P.F. Turner, 'Assesement of devices for in vivo monitoring of chemical species', Biosens. Bioelectron. Vol. 10, pp. xxiii-xxx, 1995
  80. A. F. Chetcuti, D. K. Wong, and M. C. Stuart, 'An indirect perfluorosulfonated ionomer-coated electrochemical immunosensor for the detection of the protein human chorionic gonadotrophin', Anal. Chem., Vol. 71, pp. 4088-4094, 1999 https://doi.org/10.1021/ac981216a
  81. M. Santandreu, S. Alegret, and E. Fabregas, 'Determination of b-HCG using amperometric immunosensors based on a conducting immunocomposite', Anal. Chim. Acta, Vol. 396, pp. 181-188, 1999 https://doi.org/10.1016/S0003-2670(99)00436-5
  82. S. Kelly, D. Compagnone, and G. Guilbault, 'Amperometric immunosensor for lactate dehydrogenase LD-1', Biosens. Bioelectron., Vol. 13, pp. 173-179, 1998 https://doi.org/10.1016/S0956-5663(97)00105-X
  83. C. H. Liu, K. T. Liao, and H. J. Huang, 'Amperometric immunosensors based on protein a coupled polyaniline-perfluorosulfonated ionomer composite electrodes', Anal. Chem., Vol. 72, pp. 2925-2929, 2000 https://doi.org/10.1021/ac9914317
  84. G. Key, A. Schreiber, R. Feldbrugge, .J. F. Glatz, and F. Spener, 'An immunosensor for rapid estimation of the early heart infarction- marker FABP', Acta Anaesthesiol. Scand. Suppl., Vol. 111, pp. 289-292, 1997
  85. G. Key, A. Schreiber, R. Feldbrugge, J. F. Glatz, and F. Spener, 'Multicenter evaluation of an amperometric immunosensor for plasma fatty acid-binding protein: an early marker for acute myocardial infarction', Clin. Biochem., Vol. 32, pp. 229-231. 1999 https://doi.org/10.1016/S0009-9120(98)00108-8
  86. C. J. Cook, 'Real-time measurements of corticosteroids in conscious animals using an antibodybased electrode', Nat. Biotechnol., Vol. 15, pp. 467-471, 1997 https://doi.org/10.1038/nbt0597-467
  87. A. P. F. Turner, 'Immunosensors: The next generation', Nat. Biotechnol., Vol. 15, p. 421, 1997