Treatment Technologies for Arsenic Removal from Groundwater: review paper

비소오염지하수의 현장처리기술동향: 리뷰

  • Bang Sunbaek (Arsenic Geoenvironmental Laboratory (NRL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Choe Eun Young (Arsenic Geoenvironmental Laboratory (NRL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim Kyoung-Woong (Arsenic Geoenvironmental Laboratory (NRL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
  • 방선백 (광주과학기술원 환경공학과 지질환경 비소제어 연구실) ;
  • 최은영 (광주과학기술원 환경공학과 지질환경 비소제어 연구실) ;
  • 김경웅 (광주과학기술원 환경공학과 지질환경 비소제어 연구실)
  • Published : 2005.12.01

Abstract

Arsenic is a significantly toxic contaminant in groundwater in many countries. Numerous treatment technologies have been developed to remove arsenic from groundwater. The USEPA recommends several technologies as the best available technology (BAT) candidates for the removal of arsenic. Based on the USEPA classification, arsenic treatment technologies can be divided into four technologies such as precipitation, membrane, ion exchange, and adsorption technology. The recent amendment of arsenic drinking water standard from 50 to $10{\mu}g/L$ in the United States have impacted technology selection and application for arsenic removal from arsenic contaminated groundwater. Precipitation technology is most widely used to treat arsenic contaminated groundwater and can be applied to large water treatment facility. In contrast, membrane, ion exchange, and adsorption technologies are used to be applied to small water treatment system. Recently, the arsenic treatment technology in the United States and Europe move towards adsorption technology to be applied to small water treatment system since capital and maintenance costs are relatively low and operation is simple. The principals of treatment technologies, effect factors on arsenic removal, arsenic treatment efficiencies of real treatment systems are reviewed in this paper.

전 세계적으로 수많은 나라의 지하수에 용존 되어있는 비소는 매우 독성이 강한 오염물질이다. 이로 인해서 지하수에 있는 비소를 제거하기 위한 수많은 처리기술들이 개발되고 있다. 미국 환경청에서는 비소를 처리하기 위한 가장 적합한 기술로써 여러 가지의 기술들을 추천하고 있다. 미국 환경청의 분류를 기준으로 비소처리기술은 침전, 멤브레인, 이온교환 및 흡착의 네 가지 처리기술로 나눌 수 있다. 미국에서 최근 $50{\mu}g/L$에서 $10{\mu}g/L$로의 비소 음용수 기준의 개정은 비소오염지하수에 있는 비소를 제거하기 위한 기술의 선택과 적용에 많은 영향을 주고 있다. 침전기술은 비소처리를 위해서 가장 많이 이용되는 기술로 대규모 수처리 설비로 비소를 처리하는데 적용할 수 있는 있지만, 멤브레인, 이온교환 및 흡착기술은 소규모 수처리 시설에 사용된다 최근에 미국과 유럽에서는 설치비와 유지비가 적고 운전이 간편한 흡착기술을 이용한 소규모 비소처리 시설에 많은 관심을 가지고 있는 추세이다 비소로 오염된 지하수를 처리하기 위한 처리기술들의 원리와 비소제거에 영향을 미치는 인자 및 실제 처리시설들의 비소처리효율을 본 논문에서 소개하고자 한다.

Keywords

References

  1. Bang, S., Patel, M., Lippincott, L. and Meng. X. (2005) Removal of arsenic from groundwater by granular-titanium dioxide adsorbent. Chemosphere, v. 60. p. 389-397 https://doi.org/10.1016/j.chemosphere.2004.12.008
  2. Clifford, D.A. and Lin C.C. (1991) Arsenic(III) and arsenic(V) removal from drinking water in San Ysaidro, New Mexico. EPA/600/S2-90/011, Cincinnati, p. 1-7
  3. Driehaus, W., Jekel, M. and Hildebrandt, U. (1998) Granular ferric hydroxide -a new adsorbent for the removal of arsenic from natural water. J. Water Supply Res. Technol.-Aqua, v. 47, n. 1, p. 30-35
  4. Driehaus, W. (2002) Arsenic removal - experience with the $GEH^{\circledR}$ process in Germany. Water Sci. Technol.: Water Supply, v. 2, n. 2, p. 275-280
  5. Edwards, M. (1994) Chemistry of arsenicremoval during coagulation and Fe-Mn oxidation. J. Am. Water Works Assoc, v. 86, n. 9, p. 64-78
  6. Gulledge J.H. and O'Connor, J.T. (1973) Removal of arsenic(V) from water by adsorption on aluminum and ferric hydroxides. J. Am. Water Works Assoc., v. 65, n. 8, p. 548-552
  7. Hongshao, Z. and Stanforth, R. (2001) Competitive adsorption of phosphate and arsenate on goethite. Environ. Sci. Technol., v. 35, p. 4753-4757 https://doi.org/10.1021/es010890y
  8. Kang, M., Kawasaki, M., Tamada, S., Kamei, T. and Magara, Y. (2000) Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes. Desalination, v. 131, p. 293-298 https://doi.org/10.1016/S0011-9164(00)90027-4
  9. Lepkowski, W. (1999) Arsenic crisis spurs scientists. Chemical Engineering News, v. 77, n. 20, p. 45-49 https://doi.org/10.1021/cen-v077n020.p045
  10. McNeill L.S. and Edwards, M. (1995) Soluble arsenic removal at water treatment plants. J. Am. Water Works Assoc, v. 87, n. 4, p. 105-113
  11. Meng, X., Bang, S. and Korfiatis, G.P. (2000) Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res., v. 34, p. 1255-1261 https://doi.org/10.1016/S0043-1354(99)00272-9
  12. Meng, X., Korfiatis, G.P., Bang, S. and Bang, K. (2002) Combined effects of anions on arsenicremoval by iron ydroxides. Toxicol. Lett., v. 133, p. 103-111 https://doi.org/10.1016/S0378-4274(02)00080-2
  13. Meng, X., Dadachov, M., Korfiatis, G.P. and Christodou-latos, C. (2003) Methods of preparing a surface-activated titanium oxide product and of using same in water treatment processes. US Patent Application Number 20030155302
  14. Lin, T. and Wu, J. (2001) Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res., v. 35, p. 2049-2057 https://doi.org/10.1016/S0043-1354(00)00467-X
  15. Scott, K.N., Green, J.F., Do, H.D. and McLean S.J. (1995) Arsenic removal by coagulation. J. Am Water Works Assoc., v. 87, n. 4, p. 114-126
  16. Singh, T.S. and Pant, K.K. (2004) Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Sep. Purif. Technol., v. 36, p. 139-147 https://doi.org/10.1016/S1383-5866(03)00209-0
  17. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distributionof arsenic in natural waters. Appl. Geochem., v. 17, p. 517-568 https://doi.org/10.1016/S0883-2927(02)00018-5
  18. Solley, W.B., Pierce, R.R. and Perlman, H.A. (1998) Estimated use of water in the United States in 1995. U.S. Geological survey circular 1200, Denver
  19. Song, T.J. and Logsdon, G.S. (1978) Treatment technology to meet the interim primary drinking water regulations for inorganics, Part 2. J. Am. Water Works Assoc, v. 70, n. 7, p. 379-393
  20. USEPA (2000a) Technologies and costs for removal of arsenic from drinking water. EPA/815/R-00/028, Washington D.C., p. 2-22 - 2-27
  21. USEPA (2000b) Arsenic removal from drinking water by coagulation/filtration and lime softening plants. EPA/ 600/R-00/063, Washington D.C., p. 17-50
  22. USEPA (2000c) Arsenic removal from drinking water by iron removal plants. EPA/600/R-00/086, Washington D.C., p. 28-38
  23. USEPA (2000d) Arsenic removal from drinking water by ion exchange and activated alumina plants. EPA/600/ R-00/088, Washington D.C., p. 19-39
  24. USEPA (2002) Arsenic treatment technologies for soil, waste, and water. EPA/542/R-02/004, Washington D.C., p. 9-1 - 13-5
  25. Wang, J.P., Qi, L., Moore, M.R. and Ng, J.C. (2002) A review of animal models for the study of arsenic carcinogenesis. Toxicol. Lett., v. 133, p. 17-31 https://doi.org/10.1016/S0378-4274(02)00086-3