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When notions of numbers are expanded from natural number to complex number, a
similar mathematical phenomenon can be observed in each number. As a case study, to
complex number, the phenomenon is investigated carefully and teaching materials are
created. Then complex number is expressed with matrices and is geometrically treated,
so a new number which is an extension of complex number is discovered. Thus,
teaching material regarding to complex number and matrices is made for students of
ordinary level. Moreover, for talented students, material about an extension of complex
number can be added to the previous one.
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1. INTRODUCTION

When ‘the notion of numbers is extended from natural numbers, integers, rational
numbers, and real numbers to the complex numbers, there are analogous mathematical

' This paper will be presented at the Tenth International Seminar of Mathematics Education on
Creativity Development at Korea Advanced Institute of Science and Technology, Daejeon, Korea,
October 8, 2005.
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phenomena as follows. For example, let R be the set of positive real numbers and R~ the

set of negative real numbers, then the following relation holds :
R*Rt cR*, R*R"cR”, R RtcR~, R R cCR*.

Similar relation holds for the set R* of non-zero real numbers and the set R*i of pure
imaginary numbers. These facts with regard to the product resemble to the fact with regard
to the plus operation in the field of 2 elements: 0+ 0=0,0+1=1,1+1 = 0.

Now we choose the complex number filed C' as one number-system. We want to choose
another number-system D such that C and D altogether satisfy similar structure of the field
of 2 elements.In order to find out such D, we start from thinking the regular representation
of C. Complex number a+ bi is represented by the matrix (] _2) We denote this by C(a, b)
and also matrix ({_°) by S(a, b).

As the purpose of this paper is to make creative teaching materials and to practice it
for general or capable students, we use logical descriptions in order to express its contents

hereafter.

2. COMPLEX NUMBERS, MATRICES WHICH REPRESENT
THE SCALAR-MULTIPLE OF REFLECTIONS IN
THE LINES THROUGH THE ORIGIN

2.1. Matrices which represent the scalar-multiples of reflections in the lines through

the origin.

Let the point (a, b), or vector (a, b) in the orthogonal coordinate plane be corresponding
with the complex number a + bi (i* = —1). Then, for the sum z + w of complex numbers
z = a+bi and w = c+ di, the vector sum (a, b) + (c, d) corresponds to z+w. For complex

numbers 2, w, they satisfy the properties:
|zw| = |z||w|, argzw = argz+ argw,

where |2] is a length of z and arg z is the augment of z. From these properties, we see that
to multiply w on the left by z amount to the |z|-multiple of rotation by arg z radian about
the origin for the vector w. By using these properties, we can draw the vector zw.

Since the distance is preserved by rotations for example, we deal with the distance-
preserving linear transformations on the orthogonal coordinate plane.
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If A is a matrix corresponding to such linear transformation, this condition implies that
AtA = E (FE is the identity matrix). So we can exhibit A as

cosf —sinf or cosf sinf\ (cosf —sinf)\ /1 O
sinf cosf sinf —cosf) \sinf cosf/\0 —1/°
The former is the matrix which corresponds to the rotation by @ about the origin. The lat-
ter is the one which exhibit the reflection in the line y = tan(%)x. In fact, in the orthogonal
coordinate plane, reflection in the line y = mz corresponds to the matrix
1-m? 2m
( 1+m?2 1+m? )
2m_ _ 1-m?2
1+m? T+m?2

If we put m = tan(%), then i—;ﬁ——; = cos 6, {22, = sin 6. Thus the quoted fact follows.

By considering scalar-multiples for these matrices, we get the following matrices:

(a —b) _ m (0080 -—sin@)
a

b sinf cos#
a by _ [(a-=b\(1 0\ 570 cos@ sinf
(b —a) B <b a) (O —1)_ astb (sin@ —c050>
b

— a i —
where cos 8 = T sinf = T
The former matrix is C(a, b) that represents a + b: and the latter one is exhibited by

S(a,b) that corresponds va? + b2 multiple of reflection in the line y = (tan %)a: through
origin.
We denote My, M; as follows:

My :={<a _b); a,bER},
b a
a b

M1:={< ); a,beR}.
b—-a

Then My, M, are vector spaces and we see that
MoMy C My, MoM; C My, MiMy C My, MiM; C M.

These relations are similar to the one which was established between positive real numbers
and negative real numbers.

By multiplying the imaginary unit 7 to the complex number a + b3, point (a, b) is rotated
% radian in positive sense about the origin. This rotation can be obtained by applying the
reflection in the line y = z and continuing the refiection in the line £ = 0. Also, this can
be achieved by applying the reflection in the line y = 0 and continuing reflection in the line
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y = z too. These facts are exhibited by the following matrix forms:

0 -1 -1 0\/0 1 0 1\/1 O
(1 0) =( 0 1)<1 0) - (1. 0)(0 —1>
We may say that the imaginary unit 4 is represented by the composition of two reflections.
From the above formulas, we see that ((1) _(1)), ((1) _(1)) , ((1’ (1)) are very important matrices. So,
from now on, we denote these matrices by J, H, K respectively.

Let M and M7 be the sets of regular matrices in the vector spaces My and M, respec-
tively. The union G of M and M; becomes a non-commutative group with regard to the
matrix product. Then M{ is a subgroup of G and M is a right coset in G. Clearly My is
closed under product AB of two elements A, B in M. M is not closed under the matrix
product AB of two elements, but is closed under the triple product ABC' or AB —1C (4,

B,C in M}).

2.2. Properties of matrices which represent the scalar-multiples of reflections in lines

through the origin.
The matrix S(a,bd) can be exhibited by S(a,b) = aH + bK, where H = S(1,0),
K = 5(0,1).
For H, J, K, we have the following table of multiplication:

J|H| K
J{—-E|K|-H
H|-K|\E| -J
K| H|J| E

For S(a,b), S(a,b)? = (a® + b*)E, so that inverse matrix S(a,b)™! = 7 S(a,b) in
case (a,b) # (0,0). Also we have S(a,b) = HS(b,a)K.
If we denote (¢ _5i2%) by A(6), then

sinf —cos @
A(@)AB)A(Y) = A(0)AB) T A(r) = Ale— B +7) (%)

Therefore mapping § — A(f) is a homomorphism with respect to the operations for 3-
terms between angles and matrices. We can state the formula (x) by using a geometrical
expression, as follows: v

To operate the reflection in line y = (tan(gyﬂ))x is the same as to do three reflections
in lines y = (tan(3))z, y = (ta.n(g))as, y = (tan(2))z (or reverse order) successively
(Ryan 1986, p. 96; Yaglom 1962, p. 53, Prop. 4). :

M; is not closed under the matrix product of 2 elements in. M;. but M; is closed under
the triple product ABC of A, B, C in My, and is commutative as ABC = CBA. Therefore
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we consider the new product - for A, B in M; by A - B := AHB. Then A(a) - A(B) =
A(a + B) is approved. This means that mapping § — A(6) is a homomorphism with

respect to the operation for 2-terms between sums « + 3 of angles and product A - B.

2.3. Products of matrices which represent the scalar-multiple of reflections in lines
through the origin.

We define the mapping f : Mo — M; by f(A) = AH. Then f is an isomorphism from
My onto M as vector spaces. Clearly M is algebra over R, but M; is not. So, we define
a new matrix product for the elements AH, BH in M;(A, B € My) by (AH) - (BH) :=
(AH)H(BH). Then M; becomes an algebra over R with regard to the operations + and -.
Easily we get the equation f(A) - f(B) = f(AB) so that f gives the algebra isomorphism
between My and M;.

2.4. Characterization of matrices which exhibit the scalar-multiples of reflections in
lines through origin.

We seek the condition that 2-by-2 real matrix A has the form S(a, b).

Proposition. The statement that 2-by-2 real matrix (%) can be expressed by the form
S(a, b) is equivalent to the following each one:
(1) A'A = —(det A)E,
2) AJ+JA=0QorAHK = KHA,
(3) A satisfies
(adAPX = 2(a® + b + & + d?)(adA) X (*)
Jor arbitrary 2-by-2 real matrix X. Where (adA)X = [A, X] = AX — XA

Equivalence of (1) and (2) is proved easily. The following Lemma is effective for the
proof of (3).

Lemma. For arbitrary 2-by-2 real matrices A = (Z 3), X, it holds the following equation:
(adA)’X = {(a — d)® + 4bc} (adA) X (%)

For the proof of lemma, the following expression for 2-by-2 real matrix is effectively

used:

(: Z) = aFE + fH + 7K +48J,

d a—d b+c —(b~c
wherea=(a;),,@=§ = ),7—_-(;),5: (2 )
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Remark. A formula of the form (3) is used for /-matirx or N-matrix by Hua (1951, Section
14).

2.5. Complex number plane and number plane that corresponds to the set of scalar-
multiple of reflections in lines through origin.

Points, or vectors on the complex number plane 7y are expressed by low vectors (a, b)

or column vectors (7). Then the following equations established for 2 points (a,b) and

(c,d):

a+c_a+c a\(cy f(a-b c_ac+—-d
b d) ~\b+d)’ \bJ\d)  \b a/\d/ "\d c)
Similarly, points, or vectors on the number plane 7 that correspond to the set of scalar-

multiple of reflections in lines through origin are expressed by low vectors {a, b} or column
vectors {§ }. Then the following equations are established for 2 points {a, b} and {c, d}:

a n c| _Ja+tc
b df ~ \b+d
alfel _[e b\[e]| _ c 4b d
pfldf ~\b —a)ldf = “\—d c)
Points on g and 7y have the following product-relations:
a\ [c| _ fac—bd alfc\ _ [ act+bd
b/ \df ~ lad+bc)’ |bJ\d) \|-ad+bc
Let Q be a point which is given by the product of 2 points, (a, b) and (c, d) in the complex

plane 7 and let T' be a point which is given by the product of 2 points {a, b}, {c,d} in the

number plane ;. Then
Q := (a,b)(c,d) = (ac — bd,ad + bc) and T := {a, b} {c,d} = (ac+ bd, —ad + bc)

both belongs to the plane 7, but Q # T in general. Also, the angle of segments OQ and
OT depends only to the point T'.
We define the mapping f from 7 to 7, as follows:

()= G4t -
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Then f is an isomorphism from 7 onto 7; with regard to triple sum and triple product. In
fact,

-0 ()-(0)/(0) ()
f((b) 6 (d)) =1((3) () #((5) @z oo

For {¢}, {5} in 1, we define the product- by {¢}- {3} := {}} {é}{;}, and for (3), ()
in mo , we set the product - by (§) - (§) := (§)() Then

a c\ _[(ac—bd a c| Jac—bd
b d)  \ad+bc b df  lad+bcf
Thus the mapping (a,b) — {a,b} gives an isomorphism from 7 onto 71 with respect to

[T 2]

the sum and the product

Remark. we arrange the vectors (a,b), {c,d} in this order, and think the 4-dimensional
vector a + bi + ch + dk with basis 1, 4, h, k. 4-dimennsional algebra with the following
multiplication table is called by pseudoquaternion (Rozenfel’d & Yaglom 1951, p. 205;
Yaglom 1968):

t|hi k
i|=1|k|—h
h|—-ki{1]| —i
k|l hitd 1

Matrix S(a, b) is the representation of ah + bk in the pseudoquaternion.

3. ON THE TEACHING GUIDELINE

We will consider a plan of lessons by using our teaching materials in this section.

3.1. Preliminaries of lessons.

About the matrices of M, we can think of them from two standpoints. One is that they
are reflections in line through the origin (geometrical standpoint) and another is that they
have a close connection to the complex numbers(algebraical standpoint). So, the following
5 objects are needed to the coming learning beforehand. Though, there exist something that
overlaps with the study plan.

(1) definition of vectors and these operations, vector spaces, definition of matrices and
these operations, definition of determinant.
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(2) Coordinate plane, the correspondence between linear transformations and matrices,

rotations, reflections,

(3) Definition of complex numbers and its properties, complex number plane, geometri-

cal expression of complex numbers

(4) Trigonometrical function, addition theorem

(5) The others (group, subgroup, residue class, ring, homomorphism, isomorphism)

3.2. Plan of lessons.

(D
03
3)
“)
®

(6)

M

®

€)

(10)

(11)
(12)

Definition of complex numbers: a + bi, pair of real numbers (a, b)
Geometrical expression of orthogonal coordinate plane (complex number plane)
Represented matrix C(a, b) of complex number a + bi

Relations between the left product of complex number and its represented matrix:

5)@=C 20

Distance preserving linear transformation in orthogonal coordinate plane, orthogonal

matrix, classification of 2-by-2 real orthogonal matrices:
Let M be the set of C(a,b), a, b € R, and let M; be the set of S(a,b), a, b € R.
Then the product of vector spaces My, M; satisfies following properties:

MyMy C My, MM, C My, MMy C M, MM C My

Remark that the relation above is the same as the relation of product between pos-
itive numbers and negative numbers, or non-zero real numbers and pure imaginary
numbers.

Geometrical meanings of linear transformations afforded by the elements of My and
My

M7 is not closed under the product of two elements in M, but is closed under the
product of three elements.

Geometrical meanings of triple product ABC, where A, B, C are the matrices of
the standard forms in Mj: Product of three reflections in lines through the origin is
a reflection in a line through the origin.

Some calculations of the elements in M;: inverse matrix (method of formula or
sweeping out method), eigenvalue, eigenvector, diagonalization.

Extension from the elements of My and M to 4-by-4 matrix (pseudoquaternion)
The explanation of Hamilton’s quaternion and its matrix representation.
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4. PROBLEMS IN THE TEACHING MATERIALS

We consider the reflection in the line y = (tan %)x. When 6 = 0°, 60°, 90°, 270°,
where do the point (z,y) moved by such reflections?

Verify that to operate the reflection in line y = (tan 60°)z agree with to operate the
reflections in lines y = z, y = (tan 30°)z and y = z successively.

Let A be a matrix S(1,2). Find the matrices X, Y that satisfy the following proper-
ties H=AKX,H=YKA.

Let A be a matrix C(a, b). Show that the following formula holds for arbitrary 2-by-

2 real matrix X.
A3X — XA3 —3A°XA+3AXA% = 4(AX — X A)
Let A = C(a,b), B = S(p,q), C = C(c,d),D = S(r,s).
(2) Show that (4 ﬁ) (€ g) = (£M), where
L = C(ac — bd + pr + gs,ad + bc — ps + qr),
M = S(ar — bs + pc+ gd,as + br — pd + qc).

(b) Show that det (4 5) = (det A + det B)?
Let A be a 2-by-2 real matrix that satisfies the condition A? = E. Show that

1—q?
A:(a e >,c;é0, i(l b), +E.
c —a 0-1

Let A be a 2-by-2 real matrix that satisfies the condition A2 = A. Show that

a(1-a)
a == 1b 0
A_(c 1—a>’c760’ (0 o)’ (0 1)’ E.

Find 2-by-2 real matrices that commute for each matrix H, K, ((1) _’f)
Show that 2-by-2 real matrix X satisfies the condition X HX = —H if and only if
X has a form X = (¢ 1_{Eﬁ),c;éo.
14p%
Set K(p,q) := (Z B ), g #0,and put S := {K(p,q) : p,q € R}. Then
K(0,1) = K.
(a) Show that det K(p,q) = —1.
(b) Show that 2-by-2 real matrix X satisfies the condition X = aH + bK(p,q),
g # 0 if and only if X has a form X = aH + bK(p, q).
(c) Show that S is closed under the following product:

K(p,q)K(r,s) 'K (p,q), p, q 7 s€ER.
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(11) sinht = 53—_5‘?:, cosht = et+2_e-‘ are called by the hyperbolic sine and the hyper-
bolic cosine respectively. They satisfy the addition theorem:

sinh(s + t) = sinh scosht + cosh ssinh ¢, |
cosh(s + t) = cosh scosht + sinh ssinht.

Let

Ao sinh s cosh s B sinht cosht o sinhu coshu
~ \coshs sinhs/’ ~ ~ \cosht sinht/’ = \coshwu sinhu/’

(a) Calculate AB and verify that

AB-10 = (smh(s —t+u) cosh(s —t + u)) .

cosh(s — t +u) sinh(s — t + u)
(b) Let

cosht sinht
My = - t
0 {(sinht cosht)’ o0 < <OO}’

M — sinht cosht o < 1<
1= Y \cosht sinht/’ oo

Show the following properties:
MyMy C My, MoM, C My, MMy C My, M1 M; C M,

2
(12) Find the inverse matrix for (Z %gL) , ¢ # 0, using the sweeping out method.

14p2

(13) Diagonalize the following 2-by-2 real matrices: C(a, b), S(a,b), (fl’ : F ), g #0.

5. CLOSING REMARKS

In mathematics, it often appears that the research objects have similar properties. We
paid attention to the properties of M) contrasting with the set of complex numbers. We can
consider M, from algebraic aspect and from geometric aspect. By using such M;, we have
made teaching materials to deepen the understanding of the linear algebra. In the future,
we will execute lessons according to the teaching plan in section 3, and will examine it to
make appropriate teaching materials and better one. Furthermore, we want to refine it so
that students will become to study of their own volition.
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