References
- Park, S.-C., W.-J. Chang, S.-M. Lee, Y.-J. Kim, and Y.-M. Koo (2005) Lipase catalyzed transesterification in several reaction systems: An application of room temperature lonic liquids for bi-phasic production of n-butyl acetate, Biotechnol. Bioprocess Eng. 10: 99-102 https://doi.org/10.1007/BF02931190
- Pandley, A., S. Benjamin, C. R. Soccol, P. Nigam, N. Krieger, and V. T. Soccol (1999) The real of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29: 119-131
- Langrand, G., N. Rondot, C. Triantaphylides, and J. C. Baratti (1990) Short chain flavour esters synthesis by microbial lipases. Biotechnol. Lett. 12: 581-586 https://doi.org/10.1007/BF01030756
- Talon, R., M. C. Montel, and J. L. Berdague (1996) Production of flavor esters by lipases of Staphylococcus warneri and Staphylococcus xylosus. Enzyme Microb. Technol. 19: 620-622 https://doi.org/10.1016/S0141-0229(96)00075-0
- Tsai, S. W., B. Y. Liu, and C. S. Chang (1996) Enhancement of (S)-naproxen ester productivity from racemic naproxen by lipase in organic solvents. J. Chem. Technol. Biotechnol. 65: 156-162 https://doi.org/10.1002/(SICI)1097-4660(199602)65:2<156::AID-JCTB415>3.0.CO;2-F
- Garcia, H. S., F. X. Malcata, C. G. Hill, Jr., and C. H. Amundson (1992) Use of Candida rugosa lipase immobilized in a spiral wound membrane reactor for the hydrolysis of milkfat. Enzyme Microb. Technol. 14: 535-545 https://doi.org/10.1016/0141-0229(92)90124-7
- Mojovic, L., S. Siler-Marinkovic, G. Kukic, and G. Vunjak-Novakovic (1993) Rhizopus arrhizus lipase-catalyzed interesterification of the midfraction of palm oil to a cocoa butter equivalent fat. Enzyme Microb. Technol. 15: 438- 443 https://doi.org/10.1016/0141-0229(93)90132-L
- Virto, M. D., I. Agud, S. Montero, A. Blanco, R. Solozabal, J. M. Lascaray, M. J. Llama, J. L. Serra, L. C. Landeta, and M. de Renobales (1994) Hydrolysis of animal fats by immobilized Candida rugosa lipase. Enzyme Microb. Technol. 16: 61-65 https://doi.org/10.1016/0141-0229(94)90110-4
- Gupta, M. N. (1991) Themostabilization of proteins. Biotechnol. Appl. Biochem. 14: 1-11
- Bruins, M. E., A. E. M. Janssen, and R. M. Boom (2001) Thermozymes and their applications: A review of recent literature and patents. Appl. Biochem. Biotechnol. 90: 155-186 https://doi.org/10.1385/ABAB:90:2:155
- Ulbrich, R., A. Schellenberger, and W. Damerau (1986) Studies on the thermal inactivation of immobilized enzymes. Biotechnol. Bioeng. 28: 511-522 https://doi.org/10.1002/bit.260280407
- Van der Padt, A., J. J. W. Sewalt, S. M. I. Agoston, and K. van't Riet (1992) Candida rugosa lipase stability during acylglycerol synthesis. Enzyme Microb. Technol. 14: 805-812 https://doi.org/10.1016/0141-0229(92)90096-7
- Ahn, J., E. Choi, H. Lee, S. Hwang, C. Kim, H. Jang, S. Haam, and J. Jung (2004) Enhanced secretion of Bacillus stearothermophilus L1 lipase in Saccharomyces cerevisiae by translational fusion to cellulose-binding domain. Appl. Microbiol. Biotechnol. 64: 833-839 https://doi.org/10.1007/s00253-003-1547-5
- Hwang, S., J. Ahn, S. Lee, T. G. Lee, S. Haam, K. Lee, I.- S. Ahn, and J. Jung (2004) Evaluation of cellulose-binding domain fused to a lipase for the lipase immobilization. Biotechnol. Lett. 26: 603-605 https://doi.org/10.1023/B:BILE.0000021964.69500.6f
- Bailey, J. E. and D. F. Ollis (1986) Biochemical Engineering Fundamentals. 2nd ed., pp. 86-156. McGraw-Hill, NY, USA
- Brockerhoff, H. (1968) Substrate specificity of pancreatic lipase. Biochim. Biophys. Acta. 159: 296-303 https://doi.org/10.1016/0005-2744(68)90078-8
- Seo, W.-Y. and K. Lee (2004) Optimized conditions for in situ immobilization of lipase in aldehyde-silica packed columns. Biotechnol. Bioprocess Eng. 9: 465-470 https://doi.org/10.1007/BF02933487
- Wang, T.-H. and W.-C. Lee (2003) Immobilization of proteins on magnetic nanoparticles. Biotechnol. Bioprocess Eng. 8: 263-267 https://doi.org/10.1007/BF02942276