Influences of Cultural Medium Component on the Production of Poly($\gamma$-glutamic acid) by Bacillus sp. RKY3

  • Jung Duk-Yeon (Department of Material Chemical and Biochemical Engineering, Chonnam National University) ;
  • Jung Sunok (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yun Jong-Sun (BioHelix) ;
  • Kim Jin-Nam (Department of Material Chemical and Biochemical Engineering, Chonnam National University) ;
  • Wee Young-Jung (Department of Material Chemical and Biochemical Engineering, Chonnam National University) ;
  • Jang Hong-Gi (Korean Institute of Natural Science Inc.) ;
  • Ryu Hwa-Won (School of Biological Sciences and Technology, Chonnam National University)
  • 발행 : 2005.08.01

초록

In this study, the cultural medium used for the efficient production of $\gamma$-PGA with a newly isolated Bacillus sp. RKY3 was optimized. It was necessary to supplement the culture medium with L-glutamic acid and an additional carbon source in order to induce the effective production of $\gamma$-PGA. The amount of $\gamma$-PGA increased with the addition of L-glutamic acid to the medium. The addition of 90 g/L L-glutamic acid to the medium resulted in the maximal yield of $\gamma$-PGA (83.2 g/L). The optimum nitrogen source was determined to be peptone, but corn steep liquor, a cheap nutrient, was also found to be effective for $\gamma$-PGA production. Both the $\gamma$-PGA production and cell growth increased rapidly with the addition of small amounts of $K_2HPO_4$ and $MgSO_4\cdot7H_{2}O$. Bacillus sp. RKY3 appears to require $Mg^{2+}$, rather than $Mn^{2+}$, for $\gamma$-PGA production, which is distinct from the production protocols associated with other, previously reported bacteria. Bacillus sp. RKY3 may also have contributed some minor $\gamma$-PGA depolymerase activity, resulting in the reduction of the molecular weight of the produced $\gamma$-PGA at the end of fermentation.

키워드

참고문헌

  1. Wee, Y. J., J. S. Yun, D. H. Park, and H. W. Ryu (2004) Isolation and characterization of a novel lactic acid bacterium for the production of lactic acid. Biotechnol. Bioprocess Eng. 9: 303-308 https://doi.org/10.1007/BF02942348
  2. Choi, J. I. and S. Y. Lee (2004) High level production of supra molecular weight poly(3-hydroxybutyrate) by metabolically engineered Escherichia coli. Biotechnol. Bioprocess Eng. 9: 196-200 https://doi.org/10.1007/BF02942292
  3. Park, J. K., S. H. Hyun, and J. Y. Jung (2004) Conversion of G. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol. Bioprocess Eng. 9: 383-388 https://doi.org/10.1007/BF02933062
  4. Ashiuchi, M., T. Kamei, and H. Misono (2003) Poly-$\gamma$- glutamate synthase of Bacillus subtilis. J. Mol. Cat. B 23: 101-106 https://doi.org/10.1016/S1381-1177(03)00076-6
  5. Shih, I. L. and Y. T Van (2001) The production of poly- ($\gamma$-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79: 207-225 https://doi.org/10.1016/S0960-8524(01)00074-8
  6. Kunioka, M. (1995) Biosynthesis of poly(($\gamma$-glutamic acid) from L-glutamine, citric acid and ammonium sulfate in Bacillus subtilis IFO 3335. Appl. Microbiol. Biotechnol. 44: 501-506 https://doi.org/10.1007/BF00169951
  7. Shih, I. L., Y. T. Van, and Y. N Chang (2002) Application of statistical experimental methods to optimize production of poly($\gamma$-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme Microb. Technol. 31: 213-220 https://doi.org/10.1016/S0141-0229(02)00103-5
  8. Troy, F. A. (1973) Chemistry and biosynthesis of the poly($\gamma$-D-glutamyl) capsule in Bacillus licheniformis. 1. Properties of the membrane-mediated biosynthetic reaction. J. Biol. Chem. 248: 305-316
  9. Kunioka, M. and A. Goto (1994) Biosynthesis of poly($\gamma$- glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO 3335. Appl. Microbiol. Biotechnol. 40: 867-872 https://doi.org/10.1007/BF00173990
  10. Kubota, H., T. Matsunobu, K. Uotani, H. Takebe, A. Satoh, T. Tanaka, and M. Tanguchi (1993) Production of poly($\gamma$-glutamic acid) by Bacillus subtilis F-2-01. Biosci. Biotechnol. Biochem. 57: 1212-1213 https://doi.org/10.1271/bbb.57.1212
  11. Ito, Y., T. Tanaka, T. Ohmachi, and Y. Asada (1996) Glutamic acid independent production of poly($\gamma$-glutamic acid) by Bacillus subtilis TAM-4. Biosci. Biotechnol. Biochem. 60: 1239-1242 https://doi.org/10.1271/bbb.60.1239
  12. Cheng, C., Y. Asada, and T. Aaida (1989) Production of $\gamma$- polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agric. Biol. Chem. 53: 2369-2375 https://doi.org/10.1271/bbb1961.53.2369
  13. Xu, H., M. Jiang, H. Li, D. Lu, and P. Quyang (2005) Efficient production of poly($\gamma$-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem. 40: 519-523 https://doi.org/10.1016/j.procbio.2003.09.025
  14. Kada, S., H. Nanamiya, F. Kawamura, and S. Horinouchi (2004) Glr, a glutamate racemase, supplies D-glutamate to both peptidoglycan synthesis and poly-$\gamma$-glutamate production in $\gamma$-PGA-producing Bacillus subtilis. FEMS Microbiol. Lett. 236: 13-20 https://doi.org/10.1111/j.1574-6968.2004.tb09621.x
  15. Ryu, H. W., J. S. Yun, D. Y. Jung, and S. Jung (2004) Manufacturing process of poly-glutamic acid using a newly isolated Bacillus sp. RKY3 KCTC 10412BP. Korea Patent application no. 10-2004-0027859
  16. Goto, A. and M. Kunioka (1992) Biosynthesis and hydrolysis of poly($\gamma$glutamic acid) from Bacillus subtilis IFO 3335. Biosci. Biotechnol. Biochem. 56: 1031-1035 https://doi.org/10.1271/bbb.56.1031
  17. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  18. Shih, I. L., Y. T. Van, L. C. Yeh, H. G. Lin, and Y. N. Chang (2001) Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour. Technol. 78: 267-272 https://doi.org/10.1016/S0960-8524(01)00027-X
  19. Birrer, G. A., A. M. Cromwick, and R. A. Gross (1994) $\gamma$- Poly(glutamic acid) formation by Bacillus licheniformis 9945A: physiological and biochemical studies. Int. J. Biol. Macromol. 16: 265-275 https://doi.org/10.1016/0141-8130(94)90032-9
  20. Cromwick, A. M and R. A. Gross (1994) Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and $\gamma$-poly(glutamic acid) formation. Int. J. Biol. Macromol. 17: 259-267 https://doi.org/10.1016/0141-8130(95)98153-P
  21. Leonard, C. G., R. D. Housewright, and C. B. Thorne (1958) Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. J. Bacteriol. 76: 499-503
  22. Leonard, C. G., R. D. Housewright, and C. B. Thorne (1958) Effect of metal ions on the optical specificity of glutamine synthetase and glutamyl transferase of Bacillus licheniformis. Biochem. Biophys. Acta 62: 432-434 https://doi.org/10.1016/0006-3002(62)90278-0