Cu Catalyst System with Phosphorous Containing Bidendate Ligand for Living Radical Polymerization of MMA

  • Hong Sung Chul (Department of Nano Science and Technology, Sejong University) ;
  • Shin Ki Eun (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Noh Seok Kyun (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Lyoo Won Seok (School of Textiles, Yeungnam University)
  • Published : 2005.10.01

Abstract

The polymerization of methyl methacrylate (MMA) was carried out using CuBr/bidentate phosphorus ligand catalyst systems. MMA polymerization with CuBr/phosphine-phosphinidene (PP) exhibited high conversion ($\~80\%$) in 5 h at $90^{\circ}C$ along with a linear increase of ln($[M]_0/[M]$) versus time, indicating constant concentration of the propagating radicals during the polymerization. The molecular weight of the prepared PMMA tended to increase with conversion, suggesting the living polymerization characteristic of the system. On the other hand, a large difference between the measured and theoretical molecular weight and a broad molecular weight distribution were observed, implicating possible incomplete control over the polymerization. This may have been caused by the low deactivation rate constant ($\kappa_{deact}$) of the system. The low $\kappa_{deact}$, would result in irreversible generation of radicals instead of reversible activation/deactivation process of ATRP. Polymerizations performed at different ligand to CuBr ratios and different monomer to initiator ratios did not afford better control over the polymerization, suggesting that the controllability of CuBr/phosphorus ligand system for ATRP is inherently limited.

Keywords

References

  1. K. Matyjaszewski, ACS Symposium Series; Controlled Radical Polymerization, American Chemical Society, Washington, DC, 1998
  2. K. Matyjaszewski, ACS Symposium Series; Controlled/Living Radical Polymerization: progress in ATRP, NMP, and RAFT, American Chemical Society, Washington, DC, 2000
  3. B. Moon and M. Kang, Macromol. Res., 13, 229 (2005) https://doi.org/10.1007/BF03219057
  4. W. Xu, X. Zhu, Z. Cheng, J. Chen, and J. Lu, Macromol. Res., 12, 32 (2004) https://doi.org/10.1007/BF03218992
  5. M. Sawamoto and M. Kamigaito, Chemtech, 29, 30 (1999)
  6. J.-S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 117, 5614 (1995) https://doi.org/10.1021/ja00125a035
  7. K. Matyjaszewski, Chem. Eur. J., 5, 3095 (1999) https://doi.org/10.1002/(SICI)1521-3765(19991105)5:11<3095::AID-CHEM3095>3.0.CO;2-#
  8. T. E. Patten and K. Matyjaszewski, Acc. Chem. Res., 32, 895 (1999) https://doi.org/10.1021/ar9501434
  9. T. E. Patten and K. Matyjaszewski, Adv. Mater., 10, 901 (1998) https://doi.org/10.1002/(SICI)1521-4095(199808)10:12<901::AID-ADMA901>3.0.CO;2-B
  10. K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001) https://doi.org/10.1021/cr990410+
  11. M. Kamigaito, T. Ando, and M. Sawamoto, Chem. Rev., 101, 3689 (2001) https://doi.org/10.1021/cr990410+
  12. H. Uegaki, Y. Kotani, M. Kamigaito, and M. Sawamoto, ACS Symposium Series; Living radical polymerization of acrylates with rhenium(V)-based initiating systems: ReO2I(PPh3)2/ Alkyl Iodide, American Chemical Society, Washington, DC, 2000
  13. Y. Kotani, M. Kamigaito, and M. Sawamoto, Macromolecules, 32, 2420 (1999) https://doi.org/10.1021/ma981614f
  14. M. Kato, M. Kamigaito, M. Sawamoto, and T. Higashimura, Macromolecules, 28, 1721 (1995) https://doi.org/10.1021/ma00109a056
  15. F. Simal, A. Demonceau, and A. F. Noels, Angew. Chem. Int. Ed., 38, 538 (1999) https://doi.org/10.1002/(SICI)1521-3773(19990215)38:4<538::AID-ANIE538>3.0.CO;2-W
  16. K. Matyjaszewski, M. Wei, J. Xia, and N. E. McDermott, Macromolecules, 30, 8161 (1997) https://doi.org/10.1021/ma971010w
  17. T. Ando, M. Kamigaito, and M. Sawamoto, Macromolecules, 30, 4507 (1997) https://doi.org/10.1021/ma961478j
  18. G. Moineau, P. Dubois, R. Jerome, T. Senninger, and P. Teyssie, Macromolecules, 31, 545 (1998) https://doi.org/10.1021/ma971132o
  19. V. Percec, B. Barboiu, A. Neumann, J. C. Ronda, and M. Zhao, Macromolecules, 29, 3665 (1996) https://doi.org/10.1021/ma960061a
  20. G. Moineau, C. Granel, P. Dubois, R. Jerome, and P. Teyssie, Macromolecules, 31, 542 (1998) https://doi.org/10.1021/ma971123f
  21. H. Uegaki, Y. Kotani, M. Kamigaito, and M. Sawamoto, Macromolecules, 30, 2249 (1997) https://doi.org/10.1021/ma961367k
  22. H. Uegaki, Y. Kotani, M. Kamigaito, and M. Sawamoto, Macromolecules, 31, 6756 (1998) https://doi.org/10.1021/ma9805957
  23. P. Lecomte, I. Drapier, P. Dubois, P. Teyssie, and R. Jerome, Macromolecules, 30, 7631 (1997) https://doi.org/10.1021/ma970890b
  24. D. J. Bauer, C. Like, and O. Telzer, J. Organomet. Chem. 626, 106 (2001) https://doi.org/10.1016/S0022-328X(00)00790-7