DOI QR코드

DOI QR Code

Effects of Fructans on Blood Glucose, Activities of Disaccharidases and Immune Function in Streptozotocin-Induced Diabetic Mice

당뇨 유발 생쥐에서 Fructan이 혈당과 이당류분해효소 활성 및 면역능에 미치는 영향

  • 정현진 (대구대학교 식품영양학과) ;
  • 성혜영 (대구대학교 식품영양학과) ;
  • 최영선 (대구대학교 식품영양학과) ;
  • 조성희 (대구가톨릭대학교 식품영양학과)
  • Published : 2005.10.01

Abstract

This study was conducted to investigate effects of fructans (chicory inulin, fructooligosaccharide and chicory inulin oligosaccharide) on blood glucose, activities of disaccharidases in small bowel and kidneys, and splenocyte proliferation in streptozotocin-induced diabetic mice. Sixty ICR male mice were divided into one normal group and four diabetic groups. Diabetes was induced by injecting streptozotocin after 2 weeks of experimental diets feeding. Experimental diets based on AIN93G diet were control diet, 6$ \%$ fructooligosaccharide (FOS) diet, 6$\%$ chicory inulin oligosaccharide (CIOS) diet, 6$\%$ chicory inulin (Cl) diet, and given for 25 days after streptozotocin injection. Plasma glucose was lower in Diabetic-Cl group as compared to Diabetic-control group. Plasma insulin level was not different among diabetic groups. Specific activities of jejunal maltase and sucrase in diabetic groups were about double as that of Normal group. Jejunal maltase activity and plasma glucose were positively correlated (r=0.643). However, specific activity of renal maltase in diabetic groups was not significantly different as compared to Normal group. Stimulation index of splenocyte proliferation by lipopolysaccharide (LPS) was significantly increased in Diabetic-CIOS as compared to Diabetic-control. Stimulation index of splenocyte proliferation by Concanavalin A (ConA) tended to be higher in Diabetic-CIOS group. Concentrations of interleukin-2 and interferon- $\gamma$ secreted from splenocytes induced by ConA were not significantly different among all groups. In conclusion, fructans may be effective for lowering plasma glucose, possibly by lowering disaccharidase activity and for increasing immune responses in diabetic con-ditions, where their effects can be different depending on degree of polymerization.

Streptozotocin으로 당뇨를 유발시킨 생쥐에서 fructan(치커리이뉼린과 치커리이뉼린올리고당, 프럭토올리고당)이 혈당, 인슐린과 소장 및 신장의 이당류분해효소 활성 및 면역능에 미 치는 영향을 조사한 결과는 다음과 같이 요약할 수 있다. 혈당은 당뇨군들이 정상군보다 유의하게 높았으며, 치커리이뉼린군의 혈당이 당뇨대조군에 비하여 유의하게 낮았다. Fructan은 혈장 인슐린 농도에는 영향을 미치지 않았다. 소장점막의 maltase와 sucrase활성은 당뇨군들이 정상군에 비하여 유의적으로 높았으나, 당뇨군 중에서 치커리이뉼린군이 가장 낮은 경향을 보였다. 신장 maltase 활성은 정상군과 당뇨군이 유사한 수준이었으나, 신장 sucrase와 lactase 활성은 정상군에 비하여 당뇨군에서 유의하게 높은 수준을 보였으며, 치커리이뉼린군이 당뇨대조군에 비하여 유의하게 낮은 수준을 보였다. LPS에 의한 비장세포증식에서는 당뇨대조군에 비하여 치커리이뉼린올리고당군이 유의 적으로 증가하여 정상군과 비슷한 수준을 보였다. ConA에의한 비장세포증식은 군간 유의적인 차이를 보이지 않았으나 LPS에 의한 증식 결과와 비슷한 경향을 보였다. 비장세포로부터의 IL-2의 분비는 당뇨군들이 정상군에 비하여 낮았으나, 당뇨군간에는 유의한 차이가 없었다. 결론적으로 당뇨 생쥐에서 프럭토올리고당, 치커리이뉼린올리고당, 치커리이뉼린을 비교한 결과, 혈당 강하에 미치는 효과가 치커리이뉼린에서 유의하게 나타났으며, 비장세포 증식능은 정상군에 비하여 당뇨군에서 감소하는 경향을 보였으나, 치커리이뉼린올리고당 섭취군이 당뇨대조군에 비해 비장세포 증식능이 유의하게 증가하여 면역능이 개선되는 효과를 보였다.

Keywords

References

  1. Hussain MJ, Peakman M, Gallati H, Lo SS, Hawa M, Viberti GC, Watkins PJ, Leslie RD. 1996. Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM. Diabetologia 39: 60-69
  2. Min HG. 1999. Clinical Endocrinology. Korea Medical Pub, Seoul
  3. Ishibashi T, Kitahara Y, Harada Y, Harada S, Takamoto M, Ishibashi T. 1980. Immunologic features of mice with streptozotocin-induced diabetes: depression of their immune responses to sheep red blood cells. Diabetes 29: 516-523 https://doi.org/10.2337/diabetes.29.7.516
  4. Choi HJ, Kim YE. 2003. Effects of polygonaturn odoratum on in vivo insulin activity in streptozotocin-induced diabetic rats. Kor J Nutr 36: 239-244
  5. Lee KS, Choi YS, Seo JS. 2004. Sea tangle supplementation lowers blood glucose and supports antioxidant systems in streptozotocin -induced diabetic rats. J Med Food 7: 130-135 https://doi.org/10.1089/1096620041223996
  6. Ravi K, Sivagnanam K, Subramanian S. 2004. Anti-diabetic activity of Eugenia jambolana seed kernels on strepto-zotocin-induced diabetic rats. J Med Food 7: 187-191 https://doi.org/10.1089/1096620041224067
  7. Cho SH, Im S. 2002. Effects of sea tangle extracts on proliferation and antibody production of lymphocyte from normal and diabetic mice. Food Sci Biotechnol 11: 260-263
  8. Vaugelade P, Hoebler C, Bernard F, Guillon F, Lahaye M, Duee PH, Darcy-Vrillon B. 2000. Non-starch polysaccharides extracted from seaweed can modulate intestinal absorption of glucose and insulin response in the pig. Reprod Nutr Dev 40: 33-47 https://doi.org/10.1051/rnd:2000118
  9. Kim SO, Rhee IK, Kim YJ, Rhee SJ. 1999. Effects of dietary xylooligosaccharides on the changes in light micrographs of the small intestine and disaccharidase activities in rats fed on a high cholesterol diet. Kor J Gerontol 9: 54-60
  10. Kim MH, Kim HY, Kim WK, Kim JY, Kim SH. 2001. Effects of soyoligosaccharides on blood glucose and lipid metabolism in streptozotocin-induced diabetic rats. Kor J Nutr 34: 3-13
  11. Kaur N, Gupta AK. 2002. Applications of inulin and oligofructose in health and nutrition. J Biosci 27: 703-714 https://doi.org/10.1007/BF02708379
  12. Roberfroid MB. 2000. Chicory fructooligosaccharides and the gastrointestinal tract. Nutrition 16: 677-679 https://doi.org/10.1016/S0899-9007(00)00244-6
  13. Rumessen JJ, Bode S, Hamberg O, Gudmand-Hoyer E. 1990. Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation, and influence on blood glucose, insulin, and C-peptide responses in healthy subjects. Am J Clin Nutr 52: 675-681 https://doi.org/10.1093/ajcn/52.4.675
  14. Rao AV. 1999. Dose-response effects of inulin and oligofructose on intestinal bifidogenesis effects. J Nutr 129: 1442S-1445S https://doi.org/10.1093/jn/129.7.1442S
  15. Bornet FRJ, Brouns F. 2002. Immune-stimulating and gut health-promoting properties of short-chain fructo-oligo- saccharides. Nutr Rev 60: 326-334 https://doi.org/10.1301/002966402320583442
  16. Reeves PG, Nielsen FH, Fahey GC. 1993. AIN-93 purified - diets for laboratory rodents: final report of American Institute of Nutrition ad hoc writing committee on the reformulation of the AlN-76A rodent diet. J Nutr 123: 1939-1951 https://doi.org/10.1093/jn/123.11.1939
  17. Cho YJ, Shinha J, Park JP, Yun JW. 2001. Production of inulooligosaccharide from chiory extract by endoinulinase from Xanthomonas oryzae No.5. Enzyme and Microbiol Technology 28: 439-445 https://doi.org/10.1016/S0141-0229(00)00341-0
  18. Dahlqvist. A. 1974. Disaccharidases. In Method of Enzymatic Analysis. 2nd ed. Academic Press, New York. Vol 2, p 916-922
  19. Agheli N, Kabir M, Berni-Canani, Petitjean E, Boussairi A, Luo J, Bornet F, Slama G, Rizkalla SW. 1998. Plasma lipids and fatty acid synthase activity are regulated by shortchain fructo-oligosaccharides in sucrose-fed insulin-resistant rats. J Nutr 128: 1283-1288
  20. Nandini CD, Sambaiah K, Salimath PV. 2000. Effect of dietary fibre on intestinal and renal disaccharidases in diabetic rats. Nutr Res 20: 1301-1307 https://doi.org/10.1016/S0271-5317(00)00213-X
  21. Khokhar S. 1994. Dietary fibers: their effects on intestinal digestive enzyme activities. J Nutr Biochem 5: 176-180 https://doi.org/10.1016/0955-2863(94)90069-8
  22. Kim M, Shin HK. 1996. The water-soluble extract of chicory reduces glucose uptake from the perfused jejunum in rats. J Nutr 126: 2236-2242
  23. Choi YS, Cho SH, Kim HJ, Lee HJ. 1998. Effects of soluble dietary fibers on lipid metabolism and activities of intestinal disaccharidases in rats. J Nutr Sci Vitaminol 44: 591-600 https://doi.org/10.3177/jnsv.44.591
  24. Kruger MC, Brown KE, Collett G, Layton L, Schollum LM. 2003. The effect of fructooligosaccharides with various degrees of polymerization on calcium bioavailability in the growing rat. Exp Biol Med 228: 683-688 https://doi.org/10.1177/153537020322800606
  25. Rumessen JJ, Gudrnand-Hoyer E. 1998. Fructans of chicory: intestinal transport and fermentation of different chain lengths and relation to fructose and sorbitol malabsorption. Am J Clin Nutr 68: 357-364 https://doi.org/10.1093/ajcn/68.2.357
  26. Suresh D, Sivakami S. 1998. Responses of intestinal and renal alpha-glycosidases to alloxan and streptozotociu-induced diabetes: a comparative study. Biochem Molec Biol Int 44: 647-656
  27. Ikeda T, Honda M, Ito Y, Murakami I, Mokuda O, Tominaga M, Mashiba H. 1986. Decreased glucose production from maltose in perfused kidney of streptozotocin diabetic rats. Proc Soc.Exp Biol Med 183: 241-243
  28. Chilkunda D, Nandini M, Sambaiah K, Salimath PV. 2000. Effect of dietary fibre on intestinal and renal disaccharidases in diabetic rats. Nutr Res 20: 1301-1307 https://doi.org/10.1016/S0271-5317(00)00213-X
  29. Murakami I, Ikeda T. 1998. Effects of diabetes .and hyperglycemia on disaccharidase activities in. the rat. Scand J Gastroenterol 33: 1069-1073 https://doi.org/10.1080/003655298750026778
  30. Giudicelli J. Delque-Bayer P, Sudaka P, Poiree JC. 1998. Renal neutral $\alpha$ -D-glucosidase has no role in transport of D-glucose derived from maltose hydrolysis. Am J Physiol 274: R1150-R1157
  31. Kuby J, Cameron J, Todd C, Mitchell J. 2000. Immunology. 4th ed. W. H. Freeman and Co., New York. p 301-327
  32. Lee J, Ametani A, Enomoto A, Sato Y, Motoshima H, Ike F, Kaminogawa S. 1993. Screening for the irnrnunopotentiating activity of food microorganism and enhancement of the immune response by Bifidobacterium adolescentis M101-4. Biosci Biotech Biochem 57: 2127-2132 https://doi.org/10.1271/bbb.57.2127
  33. Sung HY, Jeong HJ, Choi YS. 2004. Effects of fructans and isomaltooligosaccharide on large bowel mass and plasma and fecal immunoglobulin A in rat. Nutritional Sciences 7: 196-200
  34. Perrin P, Cassagnau E, Burg C, Patry Y, Vavasseur F, Harb J, Le Pendu J, Douillard JY, Galmiche JP, Bornet F. 1994. An interleukin 2/sodium butyrate combination as immunotherapy for rat colon cancer peritoneal carcinomatosis. Gastroenterology 107: 1697-1708 https://doi.org/10.1016/0016-5085(94)90810-9

Cited by

  1. Plants used for the treatment of diabetes in Jordan: A review of scientific evidence vol.49, pp.3, 2011, https://doi.org/10.3109/13880209.2010.501802