A Sequential Monte Carlo inference for longitudinal data with luespotted mud hopper data

짱뚱어 자료로 살펴본 장기 시계열 자료의 순차적 몬테 칼로 추론

  • 최일수 (여수대학교 응용수학과)
  • Published : 2005.10.01

Abstract

Sequential Monte Carlo techniques are a set of powerful and versatile simulation-based methods to perform optimal state estimation in nonlinear non-Gaussian state-space models. We can use Monte Carlo particle filters adaptively, i.e. so that they simultaneously estimate the parameters and the signal. However, Sequential Monte Carlo techniques require the use of special panicle filtering techniques which suffer from several drawbacks. We consider here an alternative approach combining particle filtering and Sequential Hybrid Monte Carlo. We give some examples of applications in fisheries(luespotted mud hopper data).

비선형이고 정규분포에 따르지 않는 state-space모형분석에서 순차적 몬테 칼로(SMC)는 유용한 도구 중의 하나이다. 모수와 시그럴을 동시에 추정하기 위해 Monte Carlo particle filters를 사용할 수가 있다. 그러나 SMC는 여러단계의 반복을 요구하는 특별한 particle filtering 기법을 필요로 하게 된다. 본 논문은 particle filtering과 순차적 hybrid Monte Carlo(SHMC)을 결합하는 방법을 제시하고자 한다. 실험을 위해 짱뚱어 자료를 사용하였다.

Keywords

References

  1. B. P. Carlin, N. G. Polson and D. S. Stoffer, A Monte Carlo Approach to Nonnormal and nonlinear State Space Modeling, Journal of American Statistical Association, vol 87, pp. 493-500, 1992 https://doi.org/10.2307/2290282
  2. C. K. Carter and R. Kohn, On Gibbs sampling for state space models, Biometrika, vol 81-3, pp. 541-553, 1994 https://doi.org/10.1093/biomet/81.3.541
  3. C. K. Carter and R. Kahn, Markov Chain Monte Carlo in Conditionally Gaussian State space models, Biometrika, vol 83-3, pp. 589-601, 1996 https://doi.org/10.1093/biomet/83.3.589
  4. S. Duane, A. D. Kennedy, B. Pendleton, B and D. Roweth, Hybrid Monte Carlo, Physics Letters B, vol 195, pp. 216-222, 1984 https://doi.org/10.1016/0370-2693(87)91197-X
  5. J. Geweke and H. Tanizaki, Bayesian Estimation of State-Space Models Using the Metropolis-Hastings Algorithm within Gibbs Sampling, Unpublished manuscript, 1999
  6. N. Shephard and M. K. Pitt, Likelihood analysis of non-Gaussian measurement time series. Biometrika vol 84, pp. 653-667, 1997 https://doi.org/10.1093/biomet/84.3.653
  7. H. Tanizaki, Nonlinear Filters: Estimation and Applications (Second, rivesed and enlarged edition), Springer-Verlag, 1996
  8. H. Tanizaki, On the Nonlinear and nonnormal filter using rejection sampling, IEEE transactions on automatic control, vol 44, pp 314-319, 1999 https://doi.org/10.1109/9.746257