cDNA Cloning of Farnesoic Acid-Induced Genes in Candida albicans by Differential Display Analysis

  • CHUNG SOON-CHUN (School of Agricultural Biotechnology, Seoul National University) ;
  • LEE JI-YOON (School of Agricultural Biotechnology, Seoul National University) ;
  • OH KI-BONG (School of Agricultural Biotechnology, Seoul National University, Natural Products Research Institute, Seoul National University)
  • Published : 2005.10.01

Abstract

The yeast Candida albicans has a distinguishing feature, dimorphism, which is the ability to switch between two morphological forms: a budding yeast form and a multicellular invasive filamentous form. This ability has been postulated to contribute to the virulence of this organism. Previously, we reported that the yeast-to-hypha transition in this organism is suppressed by farnesoic acid, a morphogenic autoregulatory substance that accumulates in the medium as the cells proliferate. In this study, using a differential display reverse transcription polymerase chain reaction (DDRT-PCR) technique, we have identified several genes induced in C. albicans by farnesoic acid treatment. These observations indicate that farnesoic acid can alter the expressivity of multiple genes, including the DNA replication machinery and cell-cycle-control proteins.

Keywords

References

  1. Bennett, V. 1992. Ankyrins. Adaptors between diverse plasma membrane proteins and the cytoplasm. J. Biol. Chem. 267: 8703-8706
  2. Bertuch, A. A. and V. Lundblad. 2003. The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol. Cell Biol. 23: 8202-8215 https://doi.org/10.1128/MCB.23.22.8202-8215.2003
  3. Braun, B. R. and A. D. Johnson. 1997. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277: 105-109 https://doi.org/10.1126/science.277.5322.105
  4. Brown, A. J. P. and N. A. R. Gow. 1999. Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol. 7: 333-338 https://doi.org/10.1016/S0966-842X(99)01556-5
  5. Chen, H., M. Fujita, Q. Feng, J. Clardy, and G. R. Fink. 2004. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl. Acad. Sci. USA 101: 5048-5052
  6. Chindampom, A., Y. Nakagawa, I. Mizuguchi, H. Chibana, M. Doi, and K. Tanaka. 1998. Repetitive sequences (RPSs) in the chromosomes of Candida albicans are sandwiched between two novel stretches, HOK and RB2, common to each chromosome. Microbiology 144: 849-857 https://doi.org/10.1099/00221287-144-4-849
  7. Choi, J. H., W. Lou, and A. Vancura. 1998. A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 273: 29915-29922 https://doi.org/10.1074/jbc.273.45.29915
  8. Dhillon, N. K., S. Sharma, and G. K. Khuller. 2003. Signaling through protein kinases and transcriptional regulators in Candida albicans. Crit. Rev. Microbiol. 29: 259-275 https://doi.org/10.1080/713610451
  9. EI Alami, M., A. Feller, A. Pierard, and E. Dubois. 2002. The proper folding of a long C-terminal segment of the yeast Lys14p regulator is required for activation of LYS genes in response to the metabolic effector. Mol. Microbiol. 43: 1629-1639 https://doi.org/10.1046/j.1365-2958.2002.02854.x
  10. Elzinga, S. D., A. L. Bednarz, K. Van Oosterum, P. J. Dekker, and L. A. Grivell. 1993. Yeast mitochondrial NAD(+)-dependent isocitrate dehydrogenase is an RNA-binding protein. Nucleic Acids Res. 21: 5328-5331 https://doi.org/10.1093/nar/21.23.5328
  11. Feller A., E. Dubois, F. Ramos, and A. Pierard. 1994. Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of Lys14-dependent transcriptional activation. Mol. Cell. Biol. 14: 6411-6418 https://doi.org/10.1128/MCB.14.10.6411
  12. Hornby, J. M., E. C. Jensen, A. D. Lisee, J. J. Tasto, B. Jahnke, R. Shoemaker, P. Dussault, and K. W. Nickerson. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by famesol. Appl. Environ. Microbiol. 67: 2982-2992 https://doi.org/10.1128/AEM.67.7.2982-2992.2001
  13. Hurley, J. H., A. M. Dean, Jr. D. E. Koshland, and R. M. Stroud. 1991. Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: Implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry 30: 8671-8678 https://doi.org/10.1021/bi00099a026
  14. Kim, S., E. Kim, D. S. Shin, H. Kang, and K. B. Oh. 2002. Evaluation of morphogenic regulatory activity of famesoic acid and its derivatives against Candida albicans dimorphism. Bioorg. Med. Chem. Lett. 12: 895-898 https://doi.org/10.1016/S0960-894X(02)00038-0
  15. Kinsman, O. S., K. Pitblado, and C. J. Coulson. 1988. Effect of mammalian steroid hormones and luteinizing hormone on the germination of Candida albicans and implications for vaginal candidosis. Mycoses 31: 617-626 https://doi.org/10.1111/j.1439-0507.1988.tb04416.x
  16. Knight, J. P., T. M. Daly, and L. W. Bergman. 2004. Regulation by phosphorylation of Pho81p, a cyclin-dependent kinase inhibitor in Saccharomyces cerevisiae. Curr. Genet. 46: 10-19
  17. Kokame, K., H. Kato, and T. Miyata.1996. Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis. J. Biol. Chem. 271: 29659-29665 https://doi.org/10.1074/jbc.271.47.29659
  18. Leberer, E., D. Harcus, I. D. Broadbent, K. L. Clark, D. Dignard, K. Ziegelbauer, A. Schmit, N. A. R. Gow, A. J. P. Brown, and D. Y. Thomas. 1996. Signal transduction through homo logs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA 93: 13217-13222
  19. Leberer, E., D. Harcus, D. Dignard, L. Johnson, S. Ushinsky, D. Y. Thomas, and K. Schroppel. 2001. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol. 42: 673-687 https://doi.org/10.1046/j.1365-2958.2001.02672.x
  20. Lee, J.-H., Y.-D. Cho, J. J. Choi, Y.-J. Lee, H.-S. Hoe, H.-K. Kim, and S.-T. Kwon. 2003. High-level expression in Escherichia coli of alkaline phosphatase from Thermus caldophilus GK24 and purification of the recombinant enzyme. J. Microbiol. Biotechnol. 13: 660-665
  21. Liu, H. 2001. Transcriptional control of dimorphism in Candida albicans. Curr. Opin. Microbiol. 4: 728-735 https://doi.org/10.1016/S1369-5274(01)00275-2
  22. Odds, F. C. 1985. Morphogenesis in Candida albicans. Crit. Rev. Microbiol. 12: 45-93 https://doi.org/10.3109/10408418509104425
  23. Ogawa, N., K. Noguchi, H. Sawai, Y Yamashita, C. Yompakdee, and Y. Oshima. 1995. Functional domains of Pho81p, an inhibitor of Pho85p protein kinase, in the transduction pathway of Pi signals in Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 997-1004 https://doi.org/10.1128/MCB.15.2.997
  24. Oh, K. B., H. Miyazawa, T. Naito, and H. Matsuoka. 2001. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc. Natl. Acad. Sci. USA 98: 4664-4668
  25. Park, H. S., G. J. Jhon, and W. J. Choi. 1998. Deer antler extract selectively suppresses hyphal growth in dimorphic fungus, Candida albicans. J. Microbiol. Biotechnol. 8: 291-294
  26. Park, K.-S., H.-I. Kang, J. W. Lee, and Y.-K. Paik. 2004. Anti-candida activity of YH-1715R, a new triazole derivative. J. Microbiol. Biotechnol. 14: 693-697
  27. Peggie, M. W., S. H. MacKelvie, A. Bloecher, E. V. Knatko, K. Tatchell, and M. J. Stark. 2002. Essential functions of Sds22p in chromosome stability and nuclear localization of PP1. J. Cell Sci. 115: 195-206
  28. Rocha, C. R., K. Schroppel, D. Harcus, A. Marcil, Dignard, B. N. Taylor, D. Y Thomas, M. Whiteway, and E. Leberer. 2001. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol. Biol. Cell 12: 3631-3643 https://doi.org/10.1091/mbc.12.11.3631
  29. Sato, T., T. Watanabe, T. Mikami, and T. Matsumoto. 2004. Famesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol. Pharm. Bull. 27: 751-752 https://doi.org/10.1248/bpb.27.751
  30. Schneider, K. R., R. L. Smith, and E. K. O'Shea. 1994. Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81. Science 266: 122-126 https://doi.org/10.1126/science.7939631
  31. Sedgwick, S. G. and S. J. Smerdon. 1999. The ankyrin repeat: A diversity of interactions on a common structural framework. Trends Biochem. Sci. 24: 311-316 https://doi.org/10.1016/S0968-0004(99)01426-7
  32. Sharkey, L. L., M. D. McNemar, S. M. Saporito-Irwin, P. S. Sypherd, and W. A. Fonzi. 1999. HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J. Bacteriol. 181: 5273-5279
  33. Shin, D. H., W. Y. Choi, Y. J. Yoo, M. K. Kim, and W. J. Choi. 2004. Lysophosphatidylcholine suppresses the expression of Phr1p and Pra1p, surface proteins involved in the morphogenesis of Candida albicans. J. Microbiol. Biotechnol. 14: 868-871
  34. Zhao, X., P. J. Malloy, C. M. Ardies, and D. Feldman. 1995. Oestrogen-binding protein in Candida albicans: Antibody development and cellular localization by electron immunocytochemistry. Microbiology 141: 2685-2692 https://doi.org/10.1099/13500872-141-10-2685