Molecular Structure of the PHA Synthesis Gene Cluster from New mcl-PHA Producer Pseudomonas putida KCTC1639

  • KIM TAE-KWON (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University) ;
  • VO MINH TRI (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University) ;
  • SHIN HYUN-DONG (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University) ;
  • LEE YONG-HYUN (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University)
  • Published : 2005.10.01

Abstract

Pseudomonas putida KCTC 1639 was newly identified as a potential producer of biodegradable medium chain length polyhydroxyalkanoates. It exhibited a carbon assimilation pattern quite different from other known P. putida strains, but a more similar pattern with P. oleovorans, which assimilates the carbon sources mainly through ${\beta}$-oxidation rather than the fatty acid biosynthesis pathway. The PHA synthesis gene cluster from P. putida KCTC1639 was composed of two gene loci; the PHA synthase gene locus and granule-associated gene locus, which were cloned and deposited in the GenBank under accession numbers AY286491 and AY750858 as a new nucleotide sequence, respectively. The molecular structure and amino acid homology of the new gene cluster were compared with those from Pseudomonas species, including other P. putida strains and P. oleovorans, and a higher than $90\%$ homology was observed.

Keywords

References

  1. Garcia, B., E. R. Olivera, B. Minambres, M. Femandez-Valverde, L. M. Canedo, M. A. Prieto, J. L. Garcia, M. Martinez, and J. M. Luengo. 1999. Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J. Biol. Chem. 274: 29228-29241 https://doi.org/10.1074/jbc.274.41.29228
  2. Huijberts, G. N. M., G. Eggink, P. De Waard, G. W. Huisman, and B. Witholt. 1992. Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomer. Appl. Environ. Microbiol. 58: 536-544
  3. Huisman, G. W., E. Wonink, R. Meima, B. Kazemier, P. Terpstra, and B. Witholt. 1991. Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans: Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J. Biol. Chem. 266: 2191-2198
  4. Kim, D. Y., J. S. Nam, Y. H. Rhee, and Y. B. Kim. 2003. Biosynthesis of novel poly(3-hydroxyalkanoates) containing alkoxy group by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 13: 632-635
  5. Kim, D. Y., Y. B. Kim, and Y. H. Rhee. 2000. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Bioi. Macromol. 28: 23-29 https://doi.org/10.1016/S0141-8130(00)00150-1
  6. Kim, G. J., I. Y Lee, S. C. Yoon, Y. C. Shin, and Y. H. Park. 1997. Enhanced yield and a high production of medium-chain-length poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enzyme Microb. Technol. 20: 500-505 https://doi.org/10.1016/S0141-0229(96)00179-2
  7. Kim, T. K., H. D. Shin, M. C. Seo, J. N. Lee, and Y. H. Lee. 2003. Molecular structure of PCR cloned PHA synthase genes of Pseudomonas putida KT2440 and its utilization for medium-chain length polyhydroxyalkanoate production. J. Microbiol. Biotechnol. 13: 182-190
  8. Lee, H. J., J. K. Rho, K. A. Noghabi, S. E. Lee, M. H. Choi, and S. C. Yoon. 2004. Channeling of intermediates derived from medium-chain fatty acids and de novo-synthesized fatty acids to polyhydroxyalkanoic acid by 2-bromooctanoic acid in Pseudomonas fluorescens BM07. J. Microbiol. Biotechnol. 14: 1256-1266
  9. Matsumoto, K., H. Matsusaki, K. Taguchi, M. Seki, and Y. Doi. 2002. Isolation and characterization of polyhydroxyalkanoates inclusions and their associated proteins in Pseudomonas sp. 61-3. Biomacromolecules 3: 787-792
  10. Matsusaki, H., S. Manji, K. Taguchi, M. Kato, T. Fukui, and Y. Doi. 1998. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 180: 6459-6467
  11. Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. Martins dos Santos, D. E. Fouts, S. R. Gill, M. Pop, M. Holmes, L. Brinkac, M. Beanan, R. T. DeBoy, S. Daugherty, J. Kolonay, R. Madupu, W. Nelson, O. White, J. Peterson, H. Khouri, I. Hance, P. Chris Lee, E. Holtzapple, D. Scanlan, K. Tran, A. Moazzez, T. Utterback, M. Rizzo, K. Lee, D. Kosack, D. Moestl, H. Wedler, J. Lauber, D. Stjepandic, J. Hoheisel, M. Straetz, S. Heim, C. Kiewitz, J. A. Eisen, K. N. Timmis, A. Dusterhoft, B. Tummler, and C. M. Fraser. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799-808 https://doi.org/10.1046/j.1462-2920.2002.00366.x
  12. Rehm, B. H. A., N. Kruger, and A. Steinbilchel. 1998. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis: The phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J. Biol. Chem. 273: 24044-24051 https://doi.org/10.1074/jbc.273.37.24044
  13. Shin, H. D., J. N. Lee, and Y. H. Lee. 2002. In vivo blending of medium-chain length polyhydroxyalkanoates and polyhydroxybutyrate using recombinant Pseudomonas putida harboring phbCAB operon of Ralstonia eutropha. Biotechnol. Lett. 24: 1729-1735 https://doi.org/10.1023/A:1020604915657
  14. Steinbilchel, A. and S. Hein. 2001. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms, pp. 81- 124. In Scheper, T. (ed.), Advances in Biochemical Engineering/Biotechnology. Vol. 71. Springer-Verlag, Berlin https://doi.org/10.1007/3-540-40021-4_3
  15. Takagi, Y., R. Yasuda, A. Maehara, and T. Yamane. 2004. Microbial synthesis and characterization of polyhydroxyalkanoates with tlorinated phenoxy side groups from Pseudomonas putida. European Polymer J. 40: 1551-1557 https://doi.org/10.1016/j.eurpolymj.2004.01.030
  16. Timm, A. and A. Steinbiichel. 1992. Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur. J. Biochem. 209: 15-30 https://doi.org/10.1111/j.1432-1033.1992.tb17256.x
  17. Yun, H. S., D. Y. Kim, C. W. Chung, H. W. Kim, Y. K. Yang, and Y. H. Rhee. 2003. Characterization of a tacky poly(3-hydroxyalkanoate) produced by Pseudomonas chlororaphis HS21 from palm kernel oil. J. Microbiol. Biotechnol. 13: 64-69