Enzymatic and Energetic Properties of an Aerobic Respiratory Chain­Linked NADH Oxidase System in Marine Bacterium Vibrio natriegens

  • Kang, Ji-Won (Department of Microbiology, College of Natural Sciences, Changwon National University) ;
  • Kim, Young-Jae (Department of Microbiology, College of Natural Sciences, Changwon National University)
  • Published : 2005.10.01

Abstract

Membranes prepared from Vibrio natriegens oxidized both NADH and deamino-NADH as substrates. The maximum activity of the membrane-bound NADH oxidase was obtained at about pH 8.5 in the presence of 0.2 M NaCl, whereas that of the NADH:ubiquinone oxidoreductase was obtained at about pH 7.5 in the presence of 0.2 M NaCl. Electron transfer from NADH or deamino-NADH to ubiquinone-l or oxygen generated a considerable membrane potential (${\Delta}{\psi}$), which occurred even in the presence of $20{\mu}M$ carbonylcyanide m-chlorophenylhydrazone (CCCP). However, the ${\Delta}{\psi}$ was completely collapsed by the combined addition of $10{\mu}M$ CCCP and $20{\mu}M$ monensin. On the other hand, the activity of the NADH oxidase and the ${\Delta}{\psi}$ generated by the NADH oxidase system were inhibited by about $90\%$ with $10{\mu}M$ HQNO, whereas the activity of the NADH:ubiquinone oxidoreductase and the ${\Delta}{\psi}$ generated at the NADH:ubiquinone oxidoreductase segment were inhibited by about $60\%$. Interestingly, the activity of the NADH:ubiquinone oxidoreductase and the ${\Delta}{\psi}$ generated at the NADH:ubiquinone oxidoreductase segment were resistant to the respiratory chain inhibitors such as rotenone, capsaicin, and $AgNO_3$, and the activity of the NADH oxidase and the ${\Delta}{\psi}$ generated by the NADH oxidase system were very sensitive only to $AgNO_3$. It was concluded, therefore, that V. natriegens cells possess a $AgNO_3$-resistant respiratory $Na^+$ pump that is different from the $AgNO_3$-sensitive respiratory $Na^+$ pump of a marine bacterium, Vibrio alginolyticus.

Keywords

References

  1. Asano, M., M. Hayashi, T. Unemoto, and H. Tokuda. 1985. $Ag^{+}$-sensitive NADH dehydrogenase in the $Na^{+}$-motive respiratory chain of the marine bacterium Vibrio alginolyticus. Agric. Biol. Chem. 49: 2813-2817 https://doi.org/10.1271/bbb1961.49.2813
  2. Cho, K. H. and Y. J. Kim. 2000. Enzymatic and energetic properties of the aerobic respiratory chain-linked NADH oxidase system in the marine bacterium Pseudomonas nautica. Mol. Cells 10: 432-436
  3. Dimroth, P. 1980. A new sodium transport system energized by the decarboxylation of oxaloacetate. FEBS Lett. 122: 234-236 https://doi.org/10.1016/0014-5793(80)80446-7
  4. Dimroth, P. 1987. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol. Rev. 51: 320-340
  5. Dimroth, P. 1995. On the way towards the $Na^{+}$-binding site within the $F_{1}F_{0}$ ATPase of Propionigenium modestum. Biochem. Soc. Trans. 23: 770-775 https://doi.org/10.1042/bst0230770
  6. Dimroth, P. and A. Thomer. 1989. A primary respiratory $Na^{+}$ pump of an anaerobic bacterium: The $Na^{+}$-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae. Arch. Microbiol. 151: 439-444 https://doi.org/10.1007/BF00416604
  7. Heefner, D. L. and F. M. Harold. 1982. ATP-driven sodium pump in Streptococcus faecalis. Proc. Natl. Acad. Sci. USA 79: 2798-2802
  8. Ken-Dror, S., J. K. Lanyi, B. Schobert, B. Silver, and Y. Avi-Dor. 1986. An NADH:quinone oxidoreductase of the halotolerant bacterium Bal is specifically dependent on sodium ions. Arch. Biochem. Biophys. 244: 122-127 https://doi.org/10.1016/0003-9861(86)90100-1
  9. Kim, Y. J., K. Song, and S. Rhee. 1995. A novel aerobic respiratory chain-linked NADH oxidase system in Zymomonas mobilis. J. Bacteriol. 177: 5176-5178 https://doi.org/10.1128/jb.177.17.5176-5178.1995
  10. Kim, Y. J., S. Mizushima, and H. Tokuda. 1991. Fluorescence quenching studies on the characterization of energy generated at the NADH:quinone oxidoreductase and quinol oxidase segments of marine bacteria. J. Biochem. 109: 616-621 https://doi.org/10.1093/oxfordjournals.jbchem.a123429
  11. Kluge, C., W. Laubinger, and P. Dimroth. 1992. The $Na^{+}$-translocating ATPase of Propionigenium modestum. Biochem. Soc. Trans. 20: 572-577 https://doi.org/10.1042/bst0200572
  12. Kogure, K. and H. Tokuda. 1989. Respiratory-dependent primary $Na^{+}$ pump in halophilic marine bacterium, Alcaligenes strain 201. FEBS Lett. 256: 147-149 https://doi.org/10.1016/0014-5793(89)81736-3
  13. Matsushita, K., T. Ohnishi, and H. R. Kaback. 1987. NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry 26: 7732- 7737 https://doi.org/10.1021/bi00398a029
  14. Schobert, B. and J. K. Lanyi. 1982. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257: 10306-10313
  15. Tokuda, H. 1983. Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled $Na^{+}$ pump. Biochem. Biophys. Res. Commun. 114: 113-118 https://doi.org/10.1016/0006-291X(83)91601-7
  16. Tokuda, H. and T. Unemoto. 1982. Characterization of the respiration-dependent $Na^{+}$ pump in the marine bacterium Vibrio alginolyticus. J. Biol. Chem. 257: 10007-10014
  17. Tokuda H. and T. Unemoto. 1984. $Na^{+}$ is translocated at NADH:quinone oxidoreductase segment in the respiratoy chain of Vibrio alginolyticus. J. Biol. Chem. 259: 7785-7790
  18. Tsuchiya, T. and S. Shinoda. 1985. Respiration-driven $Na^{+}$ pump and $Na^{+}$ circulation in Vibrio parahaemolyticus. J. Bacteriol. 162: 794-798
  19. Udagawa, T., T. Unemoto, and H. Tokuda. 1986. Generation of $Na^{+}$ electrochemical potential by the $Na^{+}$-motive NADH oxidase and $Na^{+}/H^{+}$ antiport system of a moderately halophilic Vibrio costicola. J. Biol. Chem. 261: 2616-2622
  20. Vagi, T. 1990. Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms. Arch. Biochem. Biophys. 281:305-311 https://doi.org/10.1016/0003-9861(90)90448-8