Investigations on Bacteria as a Potential Biological Control Agent of Summer Chafer, Amphimallon solstitiale L. (Coleoptera: Scarabaeidae)

  • Sezen Kazlm (Karadeniz Technical University, Faculty of Arts and Sciences, Department of Biology) ;
  • Demir Ismail (Karadeniz Technical University, Faculty of Arts and Sciences, Department of Biology) ;
  • Katl Hatice (Karadeniz Technical University, Faculty of Arts and Sciences, Department of Biology) ;
  • Demirbag Zihni (Karadeniz Technical University, Faculty of Arts and Sciences, Department of Biology)
  • Published : 2005.10.01

Abstract

Studying the bacteria of hazardous insects allows the opportunity to find potentially better biological control agents. Therefore, in this study, bacteria from summer chafer (Amphimallon solstitiale L., Coleoptera: Scarabaeidae) we isolated and identified the insecticidal effects of bacteria isolated from A. solstitiale and Melolontha melolontha L. (common cockchafer, Coleoptera: Scarabaeidae) and the mixtures of these bacterial isolates were investigated on A. solstitiale larvae. Crystals from Bacillus sp. isolated from M. melolontha were also purified, and tested against the second and third-stage larvae of A. solstitiale. The bacterial isolates of A. solstitiale were identified as Pseudomonas sp., Pseudomonas sp., Bacillus cereus and Micrococcus luteus, based on their morphology, spore formation, nutritional features, and physiological and biochemical characteristics. The insecticidal effects of the bacterial isolates determined on the larvae of A. solstitiale were $90\%$ with B. cereus isolated from A. solstitiale, and $75\%$ with B. cereus, B. sphaericus and B. thuringiensis isolated from M. melolontha within ten days. The highest insecticidal effects of the mixed infections on the larvae of A. solstitiale were $100\%$ both with B. cereus+B. sphaericus and with B. cereus+B. thuringiensis. In the crystal protein bioassays, the highest insecticidal effect was $65\%$ with crystals of B. thuringiensis and B. sphaericus isolated from M. melolontha within seven days. Finally, our results showed that the mixed infections could be utilized as microbial control agents, as they have a $100\%$ insecticidal effect on the larvae of A. solstitiale.

Keywords

References

  1. Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267
  2. Allen, A.A. 1995. Examples of antennal and fore-limb teratology in Coleoptera. Entomologist's Monthly Magazina 131, 1568-71
  3. Broderick, N.A., R.M. Goodman, K.F. Raffa, and J.O. Handelsman. 2000. Synergy between zwittermicin A and Bacillus thuringiensis subsp. kurstaki against gypsy moth (Lepidoptera: Lymantridae). Environ. Entomol. 29, 101-107 https://doi.org/10.1603/0046-225X-29.1.101
  4. Burgerjon, A. and D. Martouret. 1971. Determination and significance of the host spectrum of Bacillus thuringiensis, p. 305- 325. In H.D. Burges and N.W. Hussey (eds.), Microbial control of insects and mites. Academic Press, New York, New York
  5. Christine, L.C. and R.J. Ted. 1992. Laboratory Experiments in Microbiology, Third Edition, The Benjamin/Cummings Publishing Company, Inc., California
  6. Crickmore, N., D.R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, and D.H. Dean. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813
  7. Demir, I., K. Sezen, and Z. Demirbag. 2002. The first study on bacterial flora and biological control agent on Anoplus roboris (Sufr., Coleoptera). J Microbiol. 40, 104-108
  8. Glare, T.R., T.A. Jackson, and G. Zimmermann. 1993. Occurence of B. popillia and two nematode pathogens in populations of Amphimallon solstitialis (Col. Scarabaeidae) near Darmstadt. Germany, Entomophaga 38, 441-450 https://doi.org/10.1007/BF02373076
  9. Goffau, L.J.W-de. 1996. Population development and dispersal of Melolontha and other scarabaeidae in the Netherlands during the past ten years. Bulletin OILB SROP 19, 9-14
  10. Katl, H., K. Sezen, A.O. Belduz, and Z. Demirbag. 2005. Characterization of a Bacillus thuringiensis subsp. kurstaki strain isolated from Malacosoma neustria L. (Lepidoptera: Lasiocampidae). Biologia 60, 301-305
  11. Lipa, J.J., K.K. Aldebis, E. Vargas-Osuna, P. Caballero, C. Santiago- Alvarez, and P. Hernandez-Crespo. 1994. Occurrence, biological activity, and host range of entomopoxvirus B from Ocnogyna baetica (Lepidoptera: Arctiidae). J. Invertebr. Pathol. 63, 130-134 https://doi.org/10.1006/jipa.1994.1025
  12. Lipa, J.J. and E. Wiland. 1972. Bacteria isolated from cutworms and their infectivity to Agrotis spp. (Lepidoptera, Noctuidae), Acta Microbiol. Pol. 4, 127-140
  13. Lopez-Meza, J.E. and J.E. Ibarra. 1996. Characterization of a novel strain of Bacillus thuringiensis, Appl. Environ. Microbiol. 62, 1306-1310
  14. Moar, W.J., M. Pusztzai-Carey, and T.P. Mack. 1995. Toxicity of purified proteins and the HD-1 strain from Bacillus thuringiensis againts lesser cornstalk borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 88, 606-609
  15. Palleroni, N.J. 1986. In N.R. Krieg and J.G. Holt (eds.), Bergey's manual of systematic bacteriology, Vol. 1, The Williams and Wilkins, Baltimore, Maryland
  16. Poinar, G.O. 1978. Identification of the Groups of Insect Pathogens, Plenum Press, New York, New York
  17. Rowe, G.E., A. Margaritis, and H.T. Dulmage. 1987. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. Crit. Rev. Biotechnol. 6, 87-127 https://doi.org/10.3109/07388558709086986
  18. Sezen, K. and Z. Demirbag . 1999. Isolation and insecticidal activity of some bacteria from the hazelnut beetle (Balaninus nucum L.). Appl. Entomol. Zool. 34, 85-89
  19. Sezen, K., . Demir, and Z. Demirba . 2004. Study of the bacterial flora as a biological control agent of Agelastica alni L. (Coleoptera: Chrysomelidae). Biologia 59, 327-331
  20. Sivripoulou, A., L. Haritidou, E. Vasara, S. Aptosoglou, and S. Koliais. 2000. Correlation of the insecticidal activity of the Bacillus thuringiensis A4 strain against Bactrocera oleae (Diptera) with the 140-kDa crystal polypeptide. Curr. Microbiol. 41, 262-266
  21. Sneath, A.P. 1986. In A.P. Sneath, N.S. Mair, M.S. Sharpe, and J.G. Holt (eds.), Bergey's manual of systematic bacteriology, Vol. 2, Williams and Wilkins, Baltimore, Maryland
  22. T. C. Tarlm ve Koyisleri Bakanligi. 1995. Zirai Mucadele Teknik Talimatlarl, Cilt 3, Ankara
  23. Thiery, I. and E. Frachon. 1997. Identification, isolation, culture and preservation of entomopathogenic bacteria, p. 55-73. In A.L. Lacey (ed.), Manual of techniques in insect pathology. Academic Press, London
  24. Wirth, M.C., W.E. Walton, and B.A. Federici. 2000. Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefascratus (Diptera: Culicidae). J. Med. Entomol. 37, 401-407 https://doi.org/10.1603/0022-2585(2000)037[0401:CFBTRT]2.0.CO;2