Utilization of Putrescine by Streptococcus pneumoniae During Growth in Choline-limited Medium

  • Ware D. (Department of Microbiology, University of Mississippi Medical Center) ;
  • Watt J. (Research Service, Veterans Affairs Medical Center) ;
  • Swiatlo E. (Department of Microbiology, University of Mississippi Medical Center, Research Service, Veterans Affairs Medical Center)
  • Published : 2005.10.01

Abstract

Polyamines such as putrescine are small, ubiquitous polycationic molecules that are required for optimal growth of eukaryotic and prokaryotic cells. These molecules have diverse effects on cell physiology and their intracellular content is regulated by de novo synthesis and uptake from the environment. The studies presented here examined the structure of a putative polyamine transporter (Pot) operon in Streptococcus pneumoniae (pneumococcus) and growth of pneumococci in medium containing putrescine substituted for choline. RT-PCR experiments demonstrated that the four genes encoding the Pot system are co-transcribed with murB, a gene involved in an intermediary step of peptidoglycan synthesis. Pneumococci grown in chemically-defined media (CDM) containing putrescine without choline enter logarithmic phase growth after 36-48 hs. However, culture density at stationary phase eventually reaches that of choline-containing medium. Cells grown in CDM-putrescine formed abnormally elongated chains in which the daughter cells failed to separate and the choline-binding protein PspA was no longer cell-associated. Experiments with CDM containing radiolabeled putrescine demonstrated that pneumococci concentrate this polyamine in cell walls. These data suggest that pneumococci can replicate without choline if putrescine is available and this polyamine may substitute for aminoalcohols in the cell wall teichoic acids.

Keywords

References

  1. Antognoni, F., S. Del Duca, A. Kuraishi, E. Kawabe, T. Fukuchi- Shimogori, K. Kashiwagi, and K. Igarashi. 1999. Transcriptional inhibition of the operon for the spermidine uptake system by the substrate-binding protein PotD. J. Biol. Chem. 274, 1942-1948 https://doi.org/10.1074/jbc.274.4.1942
  2. Briles, D.E., M.J. Crain, B.M. Gray, C. Forman, and J. Yother. 1992. Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae. Infect. Immun. 60, 111-116
  3. Briles, D.E., J.D. King, M.A. Gray, L.S. McDaniel, E. Swiatlo, and K.A. Benton. 1996. PspA, a protection-eliciting pneumococcal protein: immunogenicity of isolated native PspA in mice. Vaccine 14, 858-867 https://doi.org/10.1016/0264-410X(96)82948-3
  4. Briles, D.E., M. Nahm, K. Schroer, J. Davie, P. Baker, J. Kearney, and R. Barletta. 1981. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 Streptococcus pneumoniae. J. Exp. Med. 153, 694-705 https://doi.org/10.1084/jem.153.3.694
  5. Briles, D.E., R.C. Tart, E. Swiatlo, J. Dillard, P. Smith, K.A. Benton, B.A. Ralph, A. Brooks-Walter, M.J. Crain, S. Hollingshead, and L.S. McDaniel. 1998. Pneumococcal diversity: considerations for new vaccine strategies with emphasis on pneumococcal surface protein A (PspA). Clin. Microbiol. Rev. 11, 645-657
  6. Chattopadhyay, M.K., C.W. Tabor, and H. Tabor. 2003. Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc. Natl. Acad. Sci. USA 100, 2261-2265
  7. Desai, B.V., H. Reiter, and D.A. Morrison. 2003. Choline starvation induces the gene licD2 in Streptococcus pneumoniae. J. Bacteriol. 185, 371-373 https://doi.org/10.1128/JB.185.1.371-373.2003
  8. Driessen, A.J.M., E.J. Smid, and W.N. Konongs. 1988. Transport of diamines by Enterococcus faecalis is mediated by an agmatineputrescine antiporter. J. Bacteriol. 170, 4522-4527
  9. Durand, J.M.B. and G.R. Bjork. (2003). Putrescine or a combination of methionine and arginine restores virulence gene expression in a tRNA modification-deficient mutant of Shigella flexneri. Mol. Microbiol. 47, 519-527 https://doi.org/10.3349/ymj.2006.47.4.519
  10. Gupta, R., N. Hamasaki-Katagiri, C.W. Tabor, and H. Tabor. 2001. Effect of spermidine on the in vivo degradation of ornithine decarboxylase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 98, 10620-10623
  11. Hoskins, J., W.E. Alborn, Jr., J. Arnold, L.C. Blaszczak, S. Burgett, B.S. DeHoff, S.T. Estrem, L. Fritz, D.-J. Fu, W. Fuller, C. Geringer, R. Gilmour, J.S. Glass, H. Khoja, A.R. Kraft, R.E. Lagace, D.J. LeBlanc, L.N. Lee, E.J. Lefkowitz, and J. Lu et als. 2001. Genome of the bacterium Streptococcus pneumoniae Strain R6. J. Bacteriol. 183, 5709-5717 https://doi.org/10.1128/JB.183.19.5709-5717.2001
  12. Igarashi, A. and K. Kashiwagi. 2000. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Comm. 271, 559-564 https://doi.org/10.1006/bbrc.2000.2601
  13. Igarashi, K. and K. Kashiwagi. 1999. Polyamine transport in bacteria and yeast. Biochem. J. 344, 633-642 https://doi.org/10.1042/0264-6021:3440633
  14. Jack, D.L., I.T. Paulsen, and M.H. Saier. 2000. The amino acid/ polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines, and organocations. Microbiology 146, 1797-1814
  15. Jedrzejas, M.J. 2001. Pneumococcal virulence factors: structure, and function. Microbiol. Mol. Biol. Rev. 65, 187-207 https://doi.org/10.1128/MMBR.65.2.187-207.2001
  16. Kamio, Y. 1987. Structural specificity of diamines covalently linked to peptidoglycan for cell growth of Veillonella alcalescens and Selenomonas ruminantium. J. Bacteriol. 169, 4837-40-256
  17. Kamio, Y., Y. Itoh, and Y. Terawaki. 1984. Chemical structure of peptidoglycan in Selenomonas ruminantium: cadaverine links covalently to the D-glutamic residue of peptidoglycan. J. Bacteriol. 146, 49-53
  18. Kamio, Y. and K. Nakamura. 1987. Putrescine and cadaverine are constituents of peptidoglycan in Veillonella alcalescens and Veillonella parvula. J. Bacteriol. 169, 2881-2884
  19. Kashiwagi, K. and K. Igarashi. 1988. Adjustment of polyamine contents in Escherichia coli. J. Bacteriol. 170, 3131-3135
  20. Kashiwagi, K., S. Miyamoto, F. Suzuki, H. Kobayashi and A. Igarashi. 1992. Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 89, 4529-4533
  21. Kashiwagi, K., S. Miyamoto, E. Nukui, H. Kobayashi, and A. Igarashi. 1993. Functions of PotA and PotD proteins in spermidine- preferential uptake system in Escherichia coli. J. Biol. Chem. 268
  22. Kashiwagi, K., H. Endo, H. Kobayashi, K. Takio, and K. Igarashi. 1995. Spermidine-preferential Uptake System in Escherichia coli. J. Biol. Chem. 270, 25377-25382 https://doi.org/10.1074/jbc.270.43.25377
  23. Mosser, J.L. and A. Tomasz. 1970. Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J. Biol. Chem. 245, 287-290
  24. Neilsen, H., J. Engelbrecht, S. Brunak, and G. von Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10, 1-6 https://doi.org/10.1093/protein/10.1.1
  25. Polissi, A., A. Pontiggia, G. Feger, M. Altieri, H. Mottl, L. Ferrari, and D. Simon. 1998. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66, 5620- 5629
  26. Sabelnikov, A.G., B. Greenberg, and S.A. Lacks. 1995. An extended -10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae. J. Mol. Biol. 250, 144-155 https://doi.org/10.1006/jmbi.1995.0366
  27. Samartzidou, H., M. Mehrazin, Z. Xu, M.J. Benedik and A.H. Delcour, 2003. Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J. Bacteriol. 185, 13-19 https://doi.org/10.1128/JB.185.1.13-19.2003
  28. Schiller, D., D. Kruse, H. Kneifel, R. Kramer, and A. Burkovski. 2000. Polyamine transport and role of potE in response to osmotic stress in Escherichia coli. J. Bacteriol. 182, 6247-6249 https://doi.org/10.1128/JB.182.21.6247-6249.2000
  29. Schneider, E. and S. Hunke. 1998. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATPhydrolyzing subunits/domains. FEMS Microbiol. Rev. 22, 1-20 https://doi.org/10.1111/j.1574-6976.1998.tb00358.x
  30. Swiatlo, E., F.R. Champlin, S.C. Holman, W.W. Wilson, and J.M. Watt. 2002. Contribution of choline-binding proteins to cell surface properties of Streptococcus pneumoniae. Infect. Immun. 70, 412-415 https://doi.org/10.1128/IAI.70.1.412-415.2002
  31. Swiatlo, E. and D. Ware. 2003. Novel vaccine strategies with protein antigens of Streptococcus pneumoniae. FEMS Immunol. Med. Microbiol. 38, 1-7 https://doi.org/10.1016/S0928-8244(03)00146-9
  32. The Biology and Chemistry of Polyamines. 1989. In S.H. Goldemberg and I.D. Algranati (eds.), The biology and chemistry of polyamines. IRL Press, Argentina
  33. Tabor, H., E.W. Hafner, and Tabor, C.W. (1980). Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase. J. Bacteriol. 144, 952-956
  34. Tettelin, H., K.E. Nelson, I.T. Paulsen, J.A. Eisen, et al. (2001). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498-506 https://doi.org/10.1126/science.1061217
  35. van de Rijn, I. and R.E. Kessler. 1980. Growth characteristics of group A streptococci in a new chemically defined medium. Infect. Immun. 27, 444-448
  36. Ware, D. and E. Swiatlo. 2003. Structure of a polyamine transporter operon in Streptococcus pneumoniae and growth in defined mediium with putrescine or spermidine. In General meetIng Of the American Society for Microbiology. American Society for Microbiology, Washington, D.C
  37. Yother, J., K. Leopold, J. White, and W. Fischer. 1998. Generation and properties of a Streptococcus pneumoniae mutant which does not require choline or analogs for growth. J. Bacteriol. 180, 2093-2101