Volatilization of molinate in paddy rice ecosystem and its concentration in air causing phytotoxicity to chili pepper

벼 재배 환경 중 molinate의 휘산과 공기 중 고추약해 발현농도

  • Park, Byung-Jun (National Institute of Agricultural Science & Technology, RDA) ;
  • Choi, Ju-Hyeon (National Institute of Agricultural Science & Technology, RDA) ;
  • Kim, Chan-Sub (National Institute of Agricultural Science & Technology, RDA) ;
  • Im, Geon-Jae (National Institute of Agricultural Science & Technology, RDA) ;
  • Oh, Byung-Youl (National Institute of Agricultural Science & Technology, RDA) ;
  • Shim, Jae-Han (Division of Applied Bioscience and Biotechnology and Institute of Agricultural Science and Technology)
  • 박병준 (농업과학기술원 농산물안전성부) ;
  • 최주현 (농업과학기술원 농산물안전성부) ;
  • 김찬섭 (농업과학기술원 농산물안전성부) ;
  • 임건재 (농업과학기술원 농산물안전성부) ;
  • 오병렬 (농업과학기술원 농산물안전성부) ;
  • 심재한 (전남대학교 응용생물공학부, 농업기술연구소)
  • Published : 2005.03.31

Abstract

To evaluate the exposure of molinate in agricultural environment and its effect against the non-target crop in air, this experiment was conducted to elucidate volatilization characteristics of molinate in aquatic condition and to determine critical concentration of molinate in the air causing phytotoxicity to Chili pepper. Cumulative volatilized rate of molinate from water was 22.7% at $35^{\circ}C$ for water temperature and 20 L/min for air velocity while 3.2% at $25^{\circ}C$ and 10 L/min within 47 hour after applied under closed system, respectively. The molinate concentrations in air above 60 cm height from soil surface of valley and open paddy rice field were reached the highest value of 18.17 and $11.59{\mu}g/m^3$, respectively within 24 hours after applying granular formulation at dose rate of molinate 150 g/1,000 $m^2$. However, their concentrations were drastically diminished to around 0.18 and $0.51{\mu}g/m^3$ level in 20 days after application, which volatilization pattern were similar to both regions. Also, the concentration of molinate in air above 60 cm height from soil surface was distributed higher 2 times than that above 180 cm height. Meanwhile, a phytotoxic symptom against the nearby chili pepper was revealed within three days after applied and molinate was detected $0.004{\sim}0.006$ mg/kg level from severe damaged leaves. The dose and exposure relations of molinate in the air against the non-target crop was also investigated in lab trial. The phytotoxic symptom, shriveled leaves, of the chili pepper was encountered by exposing two days with concentration of $13.6{\mu}g/m^3$, three days with $6.8{\mu}g/m^3$ or four days with $3.4{\mu}g/m^3$. The symptom was still recovered within four weeks after the plants had received fresh air. On the other hand, the phytotoxic response through root uptake of the herbicide in water culture was relatively insensitive, in which the symptom is observed ten days with the concentration of 300 ${\mu}g/L$.

수도용 제초제 molinate에 대하여 벼 재배환경에서 휘산양상과 공기 중 고추에 대한 약해증상 및 발현 농도설정 시험을 수행한 결과 물 중 휘산양상은 $35^{\circ}C$, 20 L/min에서 47시간 후의 누적 휘산비가 22.7%였고, $25^{\circ}C$, 10 L/min에서는 3.2%로 7배 이상이 차이를 보였다. 벼 재배 포장에 150 g/1,000 $m^2$의 약량으로 살포된 molinate의 공기 중 농도는 지면으로부터 60 cm 높이에서 곡간지와 평야지는 각각 18.17과 11.59 ${\mu}g/m^2$ 수준으로 살포 당일에 최고 휘산량을 보였고, 처리 후 20일에는 $0.18{\sim}0.51{\mu}g/m^3$로 95% 이상이 감소되었으며, 두 지역 모두 휘산 양상은 비슷하였다. 높이 간의 공기 중 molinate 농도는 지표면으로부터 60 cm 높이에서 180 cm높이 보다 2배 이상이 분포되었다. 한편 인근에 재배되고 있는 고추 신엽에서 엽록소가 파괴되면서 잎 표면이 오므라드는 증상이 약제 살포 3일만에 발생하였으며, 약해가 심하게 나타난 잎의 molinate 잔류량은 $0.004{\sim}0.006$ mg/kg 수준으로 검출되었다. 공기 중 molinate에 의한 고추 생육저해는 $6.8{\mu}g/m^3$ 농도에서는 노출 3일째에 약해가 발현되어 4일째는 약해 증상이 심하게 나타났고, $13.6{\mu}g/m^3$ 농도에서는 노출 2일째에 발현되었다. 한편 수경재배에 의한 고추약해는 물 중 $300{\mu}g/L$ 농도에서 10일 후에 약해가 발현되었다. 약해고추의 회복은 신선한 공기가 공급되었을 때 시일이 경과되면서 약해 받은 잎은 고사되어 없어지고 신엽이 새로 발생되어 4주 후에 정상고추와 비슷한 생장을 하였다.

Keywords

References

  1. Aden, K., and B. Diekkruger (2000) Modeling pesticide dynamics of four different sites using the model system SIMULAT. Agri. Water Management 44:337-355 https://doi.org/10.1016/S0378-3774(99)00099-2
  2. Charles, J. S., J. B. Bowers and D. G. Crosby (1977) Dissipation of molinate in a rice field. Agric. Food Chem. 25:940-945 https://doi.org/10.1021/jf60212a022
  3. Curry, K. K., B. D. Riggle and R. E. Hoag (1989) Ordram$^{\circledR}$ 15-G aquatic field dissipation study for aquatic use post flood. Report No. 228-073, Department of Pesticide Regulation, Sacramento, California, U.S.A
  4. Hartly, G. S., and I. J. Graham-Bryce (1980a) Principles of diffusion and flow. pp.110-203. In Physical principles of pesticide behavior. Vol. 1. Academic press, New York, U.S.A
  5. Imai, Y. and S. Kuwatsuka (1984) Uptake, translocation, and metabolic fate of the herbicide molinate in plants. J. Pesticide Sci. 9:79-90 https://doi.org/10.1584/jpestics.9.79
  6. Woodrow, J. E. and J. N. Seiber (1997) Correlation techniques for estimating pesticide volatilization flux and downwind concentrations. Environ. Sci. Technol. 31:523-529 https://doi.org/10.1021/es960357w
  7. Woodrow, J. E. and J. N. Seiber and C. Dary (2001) Predicting pesticide emission and downwind concentrations using correlation with estimated vapor pressures. J. Agric. Food Chem. 49:3841-3846 https://doi.org/10.1021/jf010358u
  8. Seiber, J., N., M. M. McChesney and J. E. Woodrow (1989) Airborne residues resulting from use of methyl parathion, molinate and thiobencarb on rice in the sacramento valley, california. Environmental Toxicology and Chemistry 8:577-588 https://doi.org/10.1897/1552-8618(1989)8[577:ARRFUO]2.0.CO;2
  9. Baker, L. W., D. L. Fitzell (1996) Ambient air concentration of pesticides in califonia. Environ. Sci. Technol. 30: 1365-1368 https://doi.org/10.1021/es950608l
  10. Ross, L. J. and R. J. Sava (1986) Fate of thiobencarb and molinate in rice fields. J. Environmental Quality 15(3):220-224
  11. Rudel, H., S. Schmidt, W. Kordel and W. Klein (1993) Degradation of pesticide in soil-comparison of laboratory experiments in a biometer system and outdoor lysimeter experiments. Science of the Total Environment 132(2-3):181-200 https://doi.org/10.1016/0048-9697(93)90131-O
  12. Seiber, J, N., M. M. McChesney (1987) Measurement and computer simulation of the volatilization flux of molinate and methyl parathion from a flooded rice field. Contract Report No. 6854, Department of Food and Agriculture, Sacramento, California, U.S.A
  13. Seiber, J, N. and M. M. McChesney (1989) Airborne residues resulting from use of molinate, methyl parathion, thiobencarb on rice in the Sacramento Vallley. California. Environmental Toxicol. and Chem. 8:577-588 https://doi.org/10.1897/1552-8618(1989)8[577:ARRFUO]2.0.CO;2
  14. Soderquist, C. J., J. B. Bowers and D. G. Crosby (1977) Dissipation of moliuate in a rice field. J. Agric. Food Chem. 25(4):940-945 https://doi.org/10.1021/jf60212a022
  15. Steffens, W., W. Mittelstaedt, A. Stork and F. Fuhr (1992) Thelysimeter station at the institute of radioagronomy of the research center Julich GMBH(KFA). Lysimeter studies of the fate of pesticides in the soil. British crop protection council, Monograph No 53:21-34
  16. 김길웅 (1998) 최신잡초방제학원론, 경북대학교
  17. 전재철 (2000) Molinate에 의한 고추 약해 발생원인 조사. 농약공업협회