Protein structure analysis : Pharmacophore study for new insecticide target AnCE using the substrate of ACE, HHL molecule

단백질의 구조연구 : ACE의 기질 HHL을 이용한 신규 살충제 표적 AnCE에 대한 약리단 연구

  • Published : 2005.09.30

Abstract

Hippuryl-L-histidyl-L-leucine (Hip-L-His-L-Leu, HHL) is the known substrate of ACE, which used often in inhibition kinetic study to design new inhibitor. Here we use HHL molecule as a template to predict pharmacophore which can interact with residues in active site of AnCE, new potential insecticide target protein. To explain physicochemical properties related to molecular geometry and conformational change in reaction field as well as electron density of atoms associated to pharmacophores, geometry optimization, NMR chemical shifts and natural population analysis were performed by ab initio and DFT method. Calculated NMR chemical shifts showed good agreement with the experimental ones and obtained electron densities were used for analyzing pharmacophores of corresponding atoms. Finally, we could extract aye pharmacophores related to hydrophobic aliphatic and aromatic site, hydrogen bonding donor and acceptor site and Zn binding site from the HHL molecule.

신규 살충제 표적 단백질인 AnCE의 활성부위 잔기들과 상호작용 가능한 약리단 (pharmacophore)을 세 개의 펩타이드로 이루어진 ACE 기질 Hippuryl-L -histidyl-L-leucine (Hip-L-His-L-Leu, HHL) 분자의 구조를 모델로 하여 예측하였다. HHL의 분자구조, 용액장 내에서의 구조변화 그리고 약리단을 구성하는 원자들의 전하밀도 분석을 위해 순이론적인 양자화학 계산방법을 이용하여 구조 최적화, NMR 화학적 이동 및 NPA 계산을 수행하였다. 이론적인 NMR 화학적 이동 값들은 실험 결과와 잘 일치함을 보였고 전하밀도 계산 결과는 해당원자의 약리단을 분석하는데 사용되었다. 결과적으로 HHL 분자 구조를 통해 소수성(aromatic, aliphatic), 수소결합 주게, 수소결합 받게, 금속 아연 결합부위의 5개 약리단을 추출할 수 있었다.

Keywords

References

  1. Becke, A. D. (1993) Density-functional thermochemistry. III, The role of exact exchange. J. Chem. Phys. 98:5648-5652 https://doi.org/10.1063/1.464913
  2. Cornell M. J., T. A. Williams, N. S. Lamango, D. Coates, P. Corvol, F. Soubrier, J. Hoheisel, H. Leharch and R. E. Isaac (1995) Cloning and expression of an evolutionary eonserved eingle-domain Angiotensin Converting Enzyme from Drosophila melanogaster. J. Biol. Chem. 270: 13613-13619 https://doi.org/10.1074/jbc.270.23.13613
  3. Corvol P, A. Michaud, F. Soubrier and T. A. Williams (1995) Recent advances in knowledge of the structure and function of the Angiotensin-I Converting-Enzyme. J. Hypertens. 13:S3-S10
  4. Cushman, D. W.; H. S. Cheung, E. F. Sabo and M. A. Ondetti (1977) Design of potent competitive inhibitors of angiotensin-converting enzyme, Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16:5484-5491 https://doi.org/10.1021/bi00644a014
  5. Ditchfield, R. (1974) Self-consistent perturbation theory of diamagnetism I. A gauge-invariant LCAO method for N.M.R. Chemical shifts. Mol. Phys. 27:789-797 https://doi.org/10.1080/00268977400100711
  6. Ekbote U., M. Looker and R. E. Isaac (2003) ACE inhibitors reduce fecundity in the mosquito, Anopheles stephensi. Comp. Biochem. Phys. B 134:593-598 https://doi.org/10.1016/S1096-4959(03)00019-8
  7. Galardy, R. E., V. Kontoyiannidou-Ostrem, V. and Z. P. Kortylewicz, (1983) Inhibition of angiotensin converting enzyme by phosphonic amides and phosphonic acids. Biochemistry 22:1990-1995 https://doi.org/10.1021/bi00277a039
  8. Gaussian 03, Revision C.02, Frisch M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Miliam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004
  9. Gordon, E. M., J. D. Godfrey, H. N. Weller, S. Natarajan, J. Pluscec, M. B. Rom, K. Niemela, E. F. Sabo and D. W. Cushman (1986) Design of tripeptide modeled inhibitors of angiotensin-converting enzyme : Studies on the role of the N-terminal acylamino group. Bioorg. Chem. 14:148-156 https://doi.org/10.1016/0045-2068(86)90024-6
  10. Isaac, R. E., U. Ekbote, D. Coates and A. D. Shirras (1999) Insect Angiotensin-Converting Enzyme: A processing enzyme with broad substrate specificity and a role in reproduction. Ann. NY Acad. Sci. 897:34 2-347 https://doi.org/10.1111/j.1749-6632.1999.tb07904.x
  11. Kohn, K., and L. J. Sham (1964) Inhomogeneous Electron Gas. Phys. Rev. 136:B864-871 https://doi.org/10.1103/PhysRev.136.B864
  12. McEvoy, F. J., F. M. Lai and J. D. Albright (1983) Antihypertensive agents: angiotensin converting enzyme inhibitors. 1-[3-(Acylthio)-3-aroylpropionyl]-L-prolines. J. Med. Chem. 26:381-393 https://doi.org/10.1021/jm00357a013
  13. Natesh, R., S. L. U. Schwager, H. R. Evans, E. D. Sturrock and K. R. Acharya (2003) Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 421:551-554 https://doi.org/10.1038/nature01370
  14. Natesh, R., S. L. U. Schwager, H. R. Evans, E. D. Sturrock and K. R. Acharya. (2004) Structural details on the binding of antihypersensitive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry 43:8718-8724 https://doi.org/10.1021/bi049480n
  15. Patchett, A. A., E. Harris, E. W. Tristram, M. J. Wyvratt, M. T. Wu, D. Taub, E. R. Peterson, T. J. Ikeler, J. Broeke, N. G. Payne, D. L. Ondeyka, E. E. Thorsett, W. J. Greenlee, N. S. Lahr, R. D. Hoffsommer, H. Joshua, W. V. Ruyle, J. W. Rothrack, S. D. Aster, A. L. Maycock, F. M. Robinson, R. F., Hirschmann, C. S. Sweet, E. H. Ulm, D. M. Gross, T. C. Vassil and C. A. Stone (1980) A new class of angiotensin-eonverting enzyme inhibitors. Nature(London) 288:280-283 https://doi.org/10.1038/288280a0
  16. Quan G. X., K. Mita, K. Okano, T. Shimada, N. Ugajin, Z. Xia, N. Goto, E. Kanke and H. Kawasaki (2001) Isolation and expression of the ecdysteroid-inducible angiotensin-converting enzyme-related gene in wing discs of Bombyx mori. Insect. Biochem. Mol. Biol. 31:97-103 https://doi.org/10.1016/S0965-1748(00)00112-0
  17. Schoofs L., D. Veelaert, A. DeLoof, R. Huybrechts and E. Isaac (1998) Immunocytochemical distribution of angiotensin I-converting enzyme-like immunoreactivity in the brain and testis of insects. Brain. Res. 785:215-227 https://doi.org/10.1016/S0006-8993(97)01398-X
  18. Skeggs, L. T., W. H. Marsh, J. R. Kalm and N. P. Shumway (1954) The existence of two forms of hypertensin. J. Exp. Med. 99:275-282 https://doi.org/10.1084/jem.99.3.275
  19. Taylor, C. A., D. Coates and A. D. Shirras (1996) The Acer gene of Drosophila codes for an angiotensinconverting enzyme homologue. Gene. 181:191-197 https://doi.org/10.1016/S0378-1119(96)00503-3
  20. Turner A. J. and N. M. Hooper (2002) The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends. Pharmacol. Sci. 23: 177-183 https://doi.org/10.1016/S0165-6147(00)01994-5
  21. Vrielink, A., Obel-Jorgensen and P. W. Codding (1996) Hippuryl-L-histidyl-L-leucine, a Substrate for Angiotensin Converting Enzyme. Acta. Cryst. C52: 1300-1302
  22. Wijffels G., C. Fitzgerald, J. Gough, G. Riding, C. Elvin, D. Kemp and P. Willadsen (1996) Cloning and characterisation of angiotensin-converting enzyme from the dipteran species, Haematobia irritans exigua, and its expression in the maturing male reproductive system. Eur. J. Biochem. 237:414-423 https://doi.org/10.1111/j.1432-1033.1996.0414k.x
  23. Williams T. A., A. Michaud, X. Houard, M. T. Chauvet, F. Soubrier and P. Corvol (1996) Drosophila melanogaster angiotensin I-converting enzyme expressed in Pichia pastoris resembles the C domain of the mammalian homologue and does not require glycosylation for secretion and enzymic activity. Biochem. J. 318:125-131 https://doi.org/10.1042/bj3180125
  24. Wolinski, K., J. F. Hilton and P. Pulay (1990) Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 112:8251-8260 https://doi.org/10.1021/ja00179a005
  25. Yang, H. Y., E. G. Erdoes and Y. Levin (1970) A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochem. Biophys. Acta 214:374-376 https://doi.org/10.1016/0005-2795(70)90017-6