DOI QR코드

DOI QR Code

Growth Characteristics and Germanium Absorption in Lettuce with Different Concentrations of Germanium in Soil

토양중 게르마늄 처리농도에 따른 상추 생육 및 게르마늄 흡수

  • 이성태 (경상남도농업기술원 식물환경연구과) ;
  • 이영한 (경상남도농업기술원 식물환경연구과) ;
  • 반경녀 (부산지방식품의약품안전청) ;
  • 서동철 (경상대학교 응용생명과학부) ;
  • 허종수 (경상대학교 응용생명과학부)
  • Published : 2005.12.31

Abstract

In order to obtain the basic information far agricultural utilization of Germanium (Ge), the growth characteristics and germanium absorption in lettuce were investigated with different concentration of germanium in soil. This experiment was carried out in the waster pot $(15,000^{-1}a)$. Germanium concentrations in soil for lettuce cultivation were maintained at 0.26, 2.0, 4.0, 6.0 and $8.0mg\;kg^{-1}$, respectively. The content of germanium in lettuce was increased with the increase of germanium concentration in soil. When lettuce was cultivated on soil supplemented with Ge $8.0mg\;kg^{-1}$, germanium phytotoxicity (reduction of plant height, No. of leaf and fresh weight) was not observed. When lettuce was cultivated on soil supplemented with Ge 4.0 and $8.0mg\;kg^{-1}$, it germanium content were found 0.75 and $1.27mg\;kg^{-1}$, respectively. Germanium absorption efficiency of lettuce was not different by germanium concentrations in the soil. When lettuce was cultivated on soil supplemented with Ge 2.0, 4.0 and $8.0mg\;kg^{-1}$, its absorption germanium efficiency was found 0.05, 0.04 and 0.03%, respectively. Germanium contents in different parts of lettuce cultivated with Ge $8.0mg\;kg^{-1}$ were $0.65mg\;kg^{-1}$ on inner leaf and $1.59mg\;kg^{-1}$ on outer leaf.

게르마늄의 약리효능이 알려짐에 따가 게르마늄이 강화된 기능성 농산물의 요구도가 높아지는 추세이다. 본 연구는 게르마늄의 농업적 이용에 대한 자료를 제공하고자 실시하였으며, 상추의 생육 및 게르마늄 흡수에 미치는 게르마늄 처리효과는 다음과 같다. 상추 포트 시험으로 토양내 게르마늄 함량을 0.26(Ge 무처리), 2.0, 4.0, 6.0 및 $8.0mg\;kg^{-1}$으로 각각 조절하여 상추를 포트시험 재배한 후 상추중의 게르마늄 함량을 분석한 결과, 게르마늄 처리농도가 증가할수록 게르마늄 함량이 증가하였으나 게르마늄 처리농도가 증가할수록 흡수율은 증가하지 않았다. 게르마늄 처리농도 $8.0mg\;kg^{-1}$ 이상에서도 초장, 엽수, 생체중 감소 등의 게르마늄 독성은 나타나지 않았다. 게르마늄을 4.0과 $8.0mg\;kg^{-1}$으로 처리하였을 때 게르마늄 함량은 각각 0.75 와 $1.27mg\;kg^{-1}$ 이었다. 게르마늄을 2.0, 4.0 및 $8.0mg\;kg^{-1}$으로 처리하였을 때 게르마늄 흡수율은 각각 0.05, 0.04 및 0.03% 로서 게르마늄 처리농도에 따른 게르마늄 흡수율의 차이는 나타나지 않았다. 게르마늄을 $8.0mg\;kg^{-1}$으로 처리하였을 때 내부엽과 외부엽의 게르마늄 함량은 각각 0.65 및 $1.590mg\;kg^{-1}$으로 외부엽에서 함량이 높았다. 게르마늄 처리농도 증가에 따라 상추내 대부분의 아미노산 함량은 약간 증가하거나 차이가 없었으며, 총 아미노산 함량에도 차이가 없는 것으로 나타났다. 토양중 게르마늄 2.0, 4.0 및 $8.0mg\;kg^{-1}$ 처리하였을 때 상추의 총 아미노산 함량은 각각 190.8, 177.5 및 $186.6mg\;g^{-1}$ 이었다.

Keywords

References

  1. Obara, K., Saito, T., Sato, H., Yamakage, K., Watanabe, T., Kakizawa, M., Tsukamoto, T., Kobayashi, K., Hongo, M., and Yoshinaga, K. (1991) Germanium poisoning; clinical symptoms and renal damage caused by long-term intake of germanium. Japanese Jouranal of Medicin. 30(1), 67-72
  2. Iijima, M., Mugishima, M., Takeuchi, M., Uchiyama, S., Kobayashi, I., and Maruyama, S. (1990) A case of inorganic germanium poisoning with peripheral and cranial nephropathy. Myopathy and autonomic dysfunction 42(9), 851-856
  3. Jang, J. J., Cho, K. J., Lee, Y. S., and Bae, J. H. (1991) Modifying responses of allyl sulfide, indole-3-carbinol and germanium in a rat multi-organ carcinogenesis model. Carcinogenesis 12(4), 691-695 https://doi.org/10.1093/carcin/12.4.691
  4. Jao, S. W., Lee, W., and Ho, Y. S. (1990) Effect of germanium on 1,2-dimethylhydrazin induced intestinal cancer in rats. Dis. Colon Recutum. 33, 99-104 https://doi.org/10.1007/BF02055535
  5. Mochizuki, H. and Kada, T. (1982) Antimutagenic effect of Ge-132 on $\gamma$-ray-induced mutation in Escherchia coli B/rWP2. Int. J. Radiat. Biol., 42(6), 653-659 https://doi.org/10.1080/09553008214551621
  6. Suzuki, F., Brutkiewicz, R. R., and Pollard, R. B. (1986) Cooperation of lyrnphokine(s) and marcophages in expression of antitumor activity of carboxyethylgermanium (Ge-132). Antitumor Res. 62(2), 177-182
  7. Aso, H., Suzuki, F., Yamaguchi, T., Hayashi, Y., Ebina, T., and Ishida, N. (1985) Induction of interferone and activation of NK cells and macrophages in mice by oral administration of Ge-12, and organic germanium compound. Microbiol. Immunol. 29(1), 65-74 https://doi.org/10.1111/j.1348-0421.1985.tb00803.x
  8. Dimartino, M. J. (1986) Antiarthritic and immuno- regulatory activity of spirogermanium. J. Pharmacol. Exp. Ther. 236(1), 103-110
  9. Sasaki, K., Ishikawa, M., Monma, K., and Takayanagi, G. (1984) Effect of carboxyethylgermanium sesquioxide (Ge-132) on the acute inflammation and $CC1_{4}$induced hepatic damage in mice. Pharmacometrics 27(6), 1119-1131
  10. Kumano, N., Nakai, Y., Ishikawa, T., Koinumaru, S., Suzuki, S., and Konno, K. (1978) Effect of carboxyethylgermanium sesquioxide in the methylcholathrene induced tumorigenesis. Sci. Rep. Res. Inst. Tohoku Univ. 25, 89-95
  11. Suzuki, Y. and Taguchi, K. (1983) Pharmacological studies of carboxyethyl germanium sesquioxide (Ge-132). Pharmacometrics 26(5), 803-810
  12. Lee, H. M. and Chung, Y. (1991) Effect of organic germanium on metallothionnein induction in liver and kidney of cadmium and mercury intoxicated rats. Kor. Yakhak Hoeji 35(2), 99-110
  13. Ho, C. C., Cherm, Y. F., and Lin, M. T. (1990) Effects of organogermanium compound 2-earboxyethy-lgermanium sesquioxide on cardiovascular function motor activity in rats. Pharmacology 41, 286-291 https://doi.org/10.1159/000138736
  14. Lee, S. T., Lee, Y. H., Lee, H. J. Cho, J. S., and Heo, J. S. (2005) Germanium contents of soil and crops in Gyeongnam province. Korean Journal of Environmental Agriculture 24(1), 34-39 https://doi.org/10.5338/KJEA.2005.24.1.034
  15. Kehlbeck, H. (1983) New geramanium containing yeast for medicinal and veterinary use. Deutsch Patent DE. 3345211
  16. Nobohiro, W., Osamu, I., Dakuro, K, and Koichi, Y. (1980) New approaches to using spent brewer's yeast. ASBC Journal 38, 5
  17. Wei, X. S. (1992) Effect of yeast on bioenrichment of germanium. Food Science 149, 49-54
  18. Lee, J. H. and Namkoong, S. B. (1997) Effect of germanium treatment on absorption of mineral element in rice seedling. J. Life Sci. & Nat. Res. Wonkwang Univ. 20, 27-34
  19. Lee, M. S., Lee, J. H., Kwon, T. O., and Namkoong, S. B. (1994) Increment of germanium contents in Angelica keiskie Koidz and Panax ginseng G.A. Meyer by In Vitro propagation. Korean J. Medicinal Crop Sci. 3(3), 251-258
  20. Park, B. W., Lee, J. H., and Kwon, T. O. (1996) Effects of $GeO_{2}$ and citric acid on germanium content of callus and plant in Angelica Koreana MAX. Korean J. Medicinal Crop Sci. 4(2), 101-108
  21. Lee, S. T., Lee, Y. H., Choi, Y. L., Lee, S. D., Lee C. H., and Heo, J. S. (2005) Growth characteristics and germanium absorption of rice plant with different germanium concentrations in soil. Korean Journal of Environmental Agriculture 24(1), 40-44 https://doi.org/10.5338/KJEA.2005.24.1.040
  22. Kim, S. T., Lee, J. W., Choi, B. S., and Lee, B. J. (1988) Determination of germanium in ginseng radix by hydride generation inductively coupled plasma spectrometry. J. of Kor. Soc. of Analytical Science 2(2) : 203-209
  23. Sparkman, D. H., Stein, W. H., and Moore. S. (1958) Automatic recording apparatus for use in the chromatography of ammo acids. Anal. Chem. 30, 1190-1197 https://doi.org/10.1021/ac60139a006
  24. Ma. F. J. and Takahashi. E. (2002) Soil, Fertillizer, and Plant Silicon Research in Japan
  25. Matsumoto, H., Syo, S., and Takahashi, E. (1975) Translocation and some forms of germanium in rice plants. Soil Sci. Plant Nutr. 21, 273-279 https://doi.org/10.1080/00380768.1975.10432642

Cited by

  1. Growth Characteristics and Germanium Absorption of Brasica juncea C. with Different Types of Germanium Compounds in Hydroponic Cultivation vol.44, pp.3, 2011, https://doi.org/10.7745/KJSSF.2011.44.3.465
  2. Germanium in the soil-plant system—a review pp.1614-7499, 2018, https://doi.org/10.1007/s11356-018-3172-y