DOI QR코드

DOI QR Code

Characteristics of Heavy Metal Contamination in Residual Mine Tailings Near Abandoned Metalliferous Mines in Korea

국내 폐금속광산 주변 잔류광미의 중금속 오염특성

  • Jung, Goo-Bok (National Institute of Agricultural Science and Technology, Environmental and Ecology Division, RDA) ;
  • Kim, Won-Il (National Institute of Agricultural Science and Technology, Environmental and Ecology Division, RDA) ;
  • Lee, Jong-Sik (National Institute of Agricultural Science and Technology, Environmental and Ecology Division, RDA) ;
  • Lee, Jae-Saeng (National Institute of Crop Science, Yeongnam Agricultural Research Institute, Plant Environment Division, RDA) ;
  • Park, Chan-Won (National Institute of Crop Science, Honam Agricultural Research Institute, Plant Environment Division, RDA) ;
  • Koh, Mun-Hwan (National Institute of Agricultural Science and Technology, Environmental and Ecology Division, RDA)
  • 정구복 (농업과학기술원 환경생태과) ;
  • 김원일 (농업과학기술원 환경생태과) ;
  • 이종식 (농업과학기술원 환경생태과) ;
  • 이재생 (작물과학원 영남농업연구소 식물환경과) ;
  • 박찬원 (작물과학원 호남농업연구소 식물환경과) ;
  • 고문환 (농업과학기술원 환경생태과)
  • Published : 2005.09.30

Abstract

Most of the tailings have been left without any management in abandoned metalliferous mines and have become the main source of heavy metal contamination of agricultural soils and crops in the these areas. To compare of environmental assessment of heavy metals in tailings derived from various 25-metalliferous mines in Korea, 3 different analysis methods such as water soluble, 0.1 M-HCl extractable, and total acid digestion method (aqua regia) were used. The chemical composition of water soluble in mine tailing were in the order ${SO_4}^{2-}>Ca^{2+}>Mn^{2+},\;Na^+,\;Al^{3+}>Mg^{2+},\;Fe^{3+}>Cl^-$. Specially, pH, EC, ${SO_4}^{2-},\;and\;Ca^{2+}$ concentrations in tailing varied considerably among the different mines. The average total concentrations of Cd, Cu, Pb, Zn, and As in tailing were 31.8, 708, 4,961, 2,275 and 3,235 mg/kg, respectively. Specially, the contents of Cd, Zn and As were higher than those of countermeasure values for soil contamination (Cd : 4, Zn : 700 and As : 15 mg/kg in soil) by Soil Environmental Conservation Act in Korea. The rates of water soluble heavy metals to total contents in tailings were in the order Cd > Zn > Cu > Pb > As. The rates of 0.1M-HCl extractable Cd, Cu, Pb, Zn, and As (1M-HCl) to total content were 17.4, 10.2, 6.5, 6.8 and 11.4% respectively. The enrichment factor of heavy metals in tailings were in the order As > Pb > Cd > Cu > Zn. The pollution index in tailing Au-Ag mine tailing were higher than those of other mine tailing. As a results of enrichment factor and pollution index for heavy metal contaminations in mine tailing of metalliferous mines, the main contaminants are mine waste materials including tailings.

광산주변의 광해대책 없이 방치된 대부분의 잔류광미는 광산지역의 하류 농경지뿐만 아니라 재배 작물의 중금속 오염의 주원인이 될 수 있다. 본 연구는 폐금속광산의 중금속 오염 특성을 평가하기 위하여 국내 25개 광산 주변에서 채취한 광미를 대상으로 수용성, 산가용성 및 전함량 중금속을 분석 검토하였다. 광미 중 수용성 무기이온들의 함량은 ${SO_4}^{2-}>Ca^{2+}>Mn^{2+},\;Na^+,\;Al^{3+}>Mg^{2+},\;Fe^{3+}>Cl^-$ 순으로 높았으며, 특히 pH, EC, ${SO_4}^{2-}$$Ca^{2+}$ 함량은 광산별로 큰 편차를 보였다. 광미중의 중금속 전함량은 Cd 31.8, Cu 708, Pb 4,961, Zn 2,275 및 As 3,235 mg/kg이었고, 중금속 중 Cd, Zn 및 As는 우리나라 토양환경보전법의 토양오염대책 기준을 초과하였다. 광미 중 전함량에 대한 수용성 중금속 비율은 Cd > Zn > Cu > Pb > As 순으로 높게 나타나 토양 환경내에서 이동성이 높은 순위와 일치하였다. 또한 0.1M-HCl 산가용성 침출비율은 각각 Cd 17.4, Cu 10.2, Pb 6.5, Zn 6.8 및 As 11.4%(1M-HCl 추출성)이었고, 광미 중 중금속 전함량에 대한 수용성 함량비율은 화학성분 조성과 관련성이 큰 것을 알 수 있었다. 광미중의 중금속 부화계수(EF)는 As > Pb > Cd > Cu > Zn 순이었고, 오염지순(PI)는 Au-Ag 광산이 다른 광산보다 높은 것으로 나타났다. 이러한 광산 주변 광미의 중금속 부화계수와 오염지수를 근거로 볼 때 심각한 수준으로 중금속이 농집되어 있어 폐광산 주변의 주요 오염원은 광미를 포함한 광산폐기물로 판단할 수 있었다. 따라서 폐광산 주변에서 중금속을 다량 함유된 광미의 유실 및 강우에 의한 유출은 하부 수계 및 농경지에 심각한 문제를 야기 시키며,특히 산성 황화물을 함유하는 광산폐수는 산성배수를 일으켜 중금속 용출 부화를 가중시킬 수 있어 이에 대한 대책이 강구되어야 할 것이다.

Keywords

References

  1. Oh, J. Ki. (1997) Evaluation of contamination at closed mine and application methods of tailing wastes. Simposium on the remediation and application methods of environmental pollution around abandoned mine, 97-1. ILE. Forum of Environmental Policy. p.15-51
  2. Jung, M. C, Jung, M. Y., and Choi, Y. W. (2004) Environmental assessment of heavy metals around abandoned metalliferous mine in Korea, Econ. Environ. Geol. 37, 21-33
  3. Lee, P. K., Jo, H. Y., and Youm, S. J. (2004) Geochemical approaches for investigation and assessment of heavy metal contamination in abandoned mine sites, Econ. Environ. Geol. 37, 35-48
  4. Lee, S. H. and Jung, J. Y (2004) Geochemical characteristics of soil solution from the soil near mine tailing dumps and the contamination assessment in Duckum mine, Econ. Environ. Geol. 37, 61-72
  5. National Institute of Agricultural Science and Technology (NIAST). (2003) Survey on the change of heavy metal contents and chemical properties in the vulnerable agricultural fields for environmental contamination. Monitoring project on agri-environment quality in Korea. Munyoungdang press. p. 59-108
  6. Choi, S. G., Park, S. J., Lee, P. K., and Kim, C. S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea, Econ. Environ. Geol. 37, 1-19
  7. Prieto, G. (1998) Geochemistry of heavy metals derived from gold-bearing sulphide minerals in the Marmato District(Colombia), Journal of Geochemical Exploration 64, 215-222 https://doi.org/10.1016/S0375-6742(98)00034-X
  8. Jung, Y. J. and Lee, S. H. (2001) Potential contamination of soil and groundwater from the residual mine tailings in the restored abandoned mine area : Shihung mine area, Econ. Environ. Geol. 34, 461-470
  9. Moon, Y. H., Moon, H. S., Park Y. S., Moon J. W., Song, Y. G., and Lee, J. C. (2003) Mobility of transition metals by change of redox condition in dump tailings from the Dukum mine, Korea, Econ. Environ. Geol. 36, 285-293
  10. Simon, M., Martin, F., Ortiz, I., Garcia, I., Fernandez, J., Fernandez, E., Dorronsoro, C., and Aguilar, J. (2001) Soil pollution by oxidation of tailings from toxic spill of a pyrite mine, The Sci. of The Total Environ. 279, 63-74 https://doi.org/10.1016/S0048-9697(01)00726-4
  11. Zhixun L. (1997) Mobilization and retention of heavy metals in mill-tailings from Garpenberg sulfide mines, Sweden, The Sci. of The Total Environ. 198, 13-31 https://doi.org/10.1016/S0048-9697(97)05433-8
  12. Jurjovec, J., Ptacek, C. J., and Blowes, D. W. (2002) Acid neutralization mechanisms and metal release in mine tailings : a laboratory column experiment, Ceochimica et Cosmochimica Acta 66, 1511-1523 https://doi.org/10.1016/S0016-7037(01)00874-2
  13. Shu, W. S., Ye, Z. H., Lan, C. Y., Zhang, Z. Q., and Wong, M. H. (2001) Acidification of lead/ zinc mine tailings and its effect on heavy metal mobility, Environ. Int'I. 26, 389-394 https://doi.org/10.1016/S0160-4120(01)00017-4
  14. Ahn, J. S., Kim, J. Y., Chon, C. M., and Moon, H. S. (2003) Mineralogical and chemical characterization of arsenic solid phases in weathered mine tailings and their leaching potential, Econ. Environ. Ceol. 36, 27-38
  15. Salmon, U. J., Carlsson, E., Petrov, P., and Oblander, B. (2001) Geochemical investigations of sulfide-bearing tailings at Kristineberg, northern Sweden, a few years after remediation Henning Holmstrom, The Sci. of The Total Environ. 273, 111-133 https://doi.org/10.1016/S0048-9697(00)00850-0
  16. Wilma, J. F. Visser. (1993) Contaminated land policies in some industralized countries, Technical Soil Protection Committee. Hague, p.45-54
  17. Kim, K. W. (1997) Evaluation of analytical results of heavIy metal concentrations in soil from the Dalsung mine area, Korea, J. of KoSSGE 4, 20-26
  18. Vega, F. A., Covelo, E. F., Andrade, M. L., and Marcet, P. (2004) Relationships between heavy metals content and soil properties in minesoils, Analytica Chimica Acta 524, 141-150 https://doi.org/10.1016/j.aca.2004.06.073
  19. National Institute of Agricultural Science and Technology (NIAST). (1988) Methods of Soil Chemical Analysis. Sam-Mi press. p.20-214
  20. Ministry of Environment. (2003) Standard Test Method for soil pollution. http://www.me.go.kr, p.29-164
  21. US EPA (1996) Microwave assisted acid dissolution of sediments, sludges, soils and oils (Method 3051A). http://www.epa.gov/SW-846/pdfs /3051a.pdf, Rev.1. p.1-25
  22. Krzysztof, L., Danutam, W., and Irena, K. (2004) Metal contamination of farming soils affected by industry, Environ. Int'I. 30, 159-165 https://doi.org/10.1016/S0160-4120(03)00157-0
  23. Ministry of Environment. (2003) Soil Environmental Conservation Act. http://www.me.go.kr. p.3-23
  24. Kloke, A. (1979) Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soil. Paper presented at United Nations-ECE Symp. Geneva
  25. Food and Agriculture Organization of the United Nations. (1985) Water quality for agriculture, irrigation, and drainage, FAO Irrigation and Drainage Paper. No.29. Rev.1. p.8-33
  26. Bowen, H. J. M. (1979) Environmental chemistry of the elements. Academic press. London, p.333

Cited by

  1. Spectral Characteristics of Heavy Metal Contaminated Soils in the Vicinity of Boksu Mine vol.29, pp.3, 2016, https://doi.org/10.9727/jmsk.2016.29.3.89
  2. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75
  3. Contamination Assessment of Water Quality and Stream Sediments Affected by Mine Drainage in the Sambo Mine Creek vol.31, pp.2, 2012, https://doi.org/10.5338/KJEA.2012.31.2.122
  4. Assessment of the Heavy Metal Contamination in Paddy Soils Below Part of the Closed Metalliferous Mine vol.34, pp.1, 2015, https://doi.org/10.5338/KJEA.2015.34.1.08
  5. Hazardous Effects of Eight Years of Application of Four Organic Waste Materials on Earthworm Numbers and Biomass in Field Lysimeters vol.60, pp.1, 2011, https://doi.org/10.1007/s00244-010-9527-0