DOI QR코드

DOI QR Code

Culture Conditions and Characterizations of a New Phytase-Producing Fungal Isolate, Aspergillus sp. L117

  • Lee, Dae-Hee (Division of Food Science and Biotechnology, Kyungnam University) ;
  • Choi, Sun-Uk (Division of Food Science and Biotechnology, Kyungnam University) ;
  • Hwang, Yong-Il (Division of Food Science and Biotechnology, Kyungnam University)
  • Published : 2005.12.31

Abstract

A novel fungal strain Aspergillus sp. L117 that produced acid-stable and thermostable phytase was isolated on basis of the clearing zone on PSM plate and the ability of Na-phytate hydrolysis. The phytase of isolate showed a 3-fold higher activity than that of A. ficuun NRRL3135. The Aspergillus sp. L117 produced maximal level of phytase at initial pH of 5.0 and $30^{\circ}C$. The optimal pH and temperature for phytase activity were 5.5 and $50^{\circ}C$, respectively. The phytase showed totally stable activity after 20 min of exposure between 30 and $90^{\circ}C$, and even at $100^{\circ}C$. The highest level of residual phytase activity was obtained at pH 5.5, and still retained the stability at the broadest pH ranges (2.0 to 7.0) of all the aforementioned phytases. Storage stability of phytase was preserved over 96% of initial activities for 60 days at 4, -20, and $-70^{\circ}C$ and to retain even 70% of the initial activity at room temperature.

Keywords

References

  1. Bae, H. D., Yanke, L. J., Cheng, K. J. and Selinger, L. B. 1999. A novel staining method for detecting phytase activity. J. Microbiol. Methods 39: 17-22 https://doi.org/10.1016/S0167-7012(99)00096-2
  2. Brearley, C. A. and Hanke, D. E. 1996. Inositol phosphates in barley (Hordum vulgare L.) aleurone tissue are stereochemically similar to the products of breakdown of $InsP_{6}$ in vitro by wheat-bran phytase. Biochem. J. 318: 279-286
  3. Chelius, M. K. and Wodzinski, R. J. 1994. Strain improvement of Aspergillus niger for phytase production. Appl. Microbiol. Biotechnol. 41: 79-83 https://doi.org/10.1007/BF00166085
  4. Cromwell, G. L. and Coffey, R. D. 1991. Phosphorus, a key essential nutrient, yet a possible major pollutant-its central role in animal nutrition. Pp. 134-145. In: Biotechnology in the feed industry. Proceedings of the Alltech 7th Annual Symposium. ed. Lyons T.P. Nicholasville, KY: Alltech Technical Publications
  5. Cromwell, G. L., Coffey, R. D., Monegue, H. J. and Randolph, J. J. 1995. Efficacy of low-activity, microbial phytase in improving bioavailability of phosphorus in com-soybean meal diets for pigs. J Anim. Sci. 73: 449-456
  6. DeBoland, A. R., Gamer, G. B. and O'Dell, B. L. 1975. Identification and properties of 'phytate' in cereal grains and oilseed products. J Agric. Food Chem. 23: 1186-1189 https://doi.org/10.1021/jf60202a038
  7. Dvorakova, J., Volfova, O. and Kopecky, J. 1997. Characterization of phytase produced from Aspergillus niger. Folia Microbiol. 42: 349-352 https://doi.org/10.1007/BF02816948
  8. Fujita, J., Yamane, Y, Fukuda, H., Kizaki, Y, Wakabayashi, S., Shigeta, S., Suzuki, O. and Ono, K. 2003. Production and properties of phytase and acid phosphatase from a sake koji mold, Aspergillus oryzae. J Biosci. Bioeng. 95: 348-353
  9. Gargova, S., Roshkoya, Z., Vancheva. 1997. Screening of fungi for phytase production. Biotechnol. Tech. 11: 211-224
  10. Greiner, R., Haller, E., Konietzny, U. and Jany, K. D. 1997. Purification and characterization of a phytase from Klebsiella terrigena. Arch. Biochem. Biophys. 341: 201-206 https://doi.org/10.1006/abbi.1997.9942
  11. Greiner, R., Konietzny, U. and Jany, K. D. 1993. Purification and characterization of two phytase from Escherichia coli. Arch. Biochem. Biophys. 303: 107-113 https://doi.org/10.1006/abbi.1993.1261
  12. Howson, S. J. and Davis, R. P. 1983. Production of phytatehydrolyzing enzyme by some fungi. Enzyme Microb. Technol. 5: 377-382 https://doi.org/10.1016/0141-0229(83)90012-1
  13. Jareonkitmongkol, S., Ohya, M., Watanabe, R., Takagi, H. and Nakamori, S. 1997. Partial purification of phytase from a soil isolate bacterium, Klebsiella oxytoca MO-3. J Ferment. Bioeng. 83: 393-394 https://doi.org/10.1016/S0922-338X(97)80149-3
  14. Kerovuo, J., Lauraeus, M., Nurminen, P., Kalkkinen, N. and Apajalahti, J. 1998. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64: 2079-2085
  15. Kim, D. S., Godber, J. S. and Kim, H. R. 1999. Culture conditions for a new phytase production fungus. Biotechnol. Lett. 21: 1077-1081 https://doi.org/10.1023/A:1005696829168
  16. Kim, Y. O., Kim, H. K., Bae, K. S., Yu, J. H. and Oh, T. K. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS 11. Enzyme Microb. Technol. 22: 2-7 https://doi.org/10.1016/S0141-0229(97)00096-3
  17. Lambrechts, C., Boze, H., Segueilba, L., Moulin, O. and Galzy, P. 1992. Utilization of phytate by some yeasts. Biotechnol. Lett. 14: 61-66 https://doi.org/10.1007/BF01030915
  18. Lihono, M. A., Serfass, R. E., Sell, J. L. and Palo, P. E. 1997. Bioavailability of calcium citrate malate added to microbial phytase-treated, hydrothermally cooked soymilk. J Food Sci. 62: 1226-1230 https://doi.org/10.1111/j.1365-2621.1997.tb12250.x
  19. Lolas, M. and Markakis, P. 1977. Phytase of navy beans. J Food Sci 42: 1094-1097 https://doi.org/10.1111/j.1365-2621.1977.tb12674.x
  20. Mitchell, D. B., Vogel, K., Weimann, B. J., Pasamontes, L. and van Loon, A. P. G. M. 1997. The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143: 245-252 https://doi.org/10.1099/00221287-143-1-245
  21. Murry, A. C; Lewis, R. D. and Amos, H. E. 1997. The effect of microbial phytase in a pearl millet-soybean meal diet on apparent digestibility and retention of nutrients, serum mineral concentration, and bone mineral density of nursery pigs. J Anim. Sci. 75: 1284-1291
  22. Nelson, T. S., Shieh, T. R., Wodzinsky, R. J. and Ware, J. H. 1971. Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J Nutr. 101: 1289-1294
  23. Pasamontes, L., Haiker, M., Wyss, M., Tessier, M. and van Loon, A. P. G M. 1997. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63: 1696-1700
  24. Q'Quinn, P. R, Knabe, D. A. and Gregg, E. J. 1997. Efficacy of Natuphos in sorghum-based diets of finishing swine. J Anim. Sci. 75: 1299-1307
  25. Quan, C, Zhang, L., Wang, Y. and Ohta, Y. 2001. Production of phytase in a low phosphate medium by a novel yeast Candida krusei. J Biosci. Bioeng. 92: 154-160 https://doi.org/10.1263/jbb.92.154
  26. Raper, K. B. and Fennell, D. I. 1965. The genus Aspergillus. Williams and Wilkins, New York
  27. Reddy, N. R, Sathe, S. K. and Salunkhe, D. K. 1982. Phytate in legumes and cereals. Pp 1-92. In: Chichester, C. O., Mark, E. M. and Stewart, G F. Eds. Advances in Food Chemistry. Academic Press, New York
  28. Sharma, C. B., Goel, M. and Irshad, M. 1978. Myo-inositol hexaphosphate as a potential inhibitor of a-amylase of different origins. Phytochemistry 17: 201-204 https://doi.org/10.1016/S0031-9422(00)94146-3
  29. Shieh, T. R and Ware, J. H. 1968. Survey of microorganisms for the production of extracellular phytase. Appl. Microbiol. 16: 1348-1351
  30. Shimizu, M. 1992. Purification and characterization of phytaae from Bacillus subtilis (natto) N-77. Biosci. Biotechnol. Biochem. 56: 1266-1269 https://doi.org/10.1271/bbb.56.1266
  31. Shimizu, M.1993. Purification and characterization of phytaae from Aspergillus oryzae K1. Biosci. Biotechnol. Biochem. 57: 1364-1365 https://doi.org/10.1271/bbb.57.1364
  32. Ullah, A. H. J. and Gibson, D. M. 1987. Extracellular phytase (E.G. 3.1.3.8.) from Aspergillus jicuum NRRL 3135: purification and characterization, Prep. Biochem. 17: 63-91 https://doi.org/10.1080/00327488708062477
  33. Ullah, A. H. J. 1988. Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficcum. Prep. Biochem. 18: 443-458 https://doi.org/10.1080/00327488808062543
  34. Ullah, A. H. J. and Gibson, D. M. 1988. Purification and characterization of phytase from cotyledons of germinating soybeans seeds. Arch. Biochem. Biophys. 260: 503-513 https://doi.org/10.1016/0003-9861(88)90475-4
  35. Utt, E. A. 1987. The strain improvement of Aspergillus jicuum NRRL 3135. M.S. Thesis. University of Central Florida, Florida, USA
  36. Wodzinski, R. J. and Ullah, A. H. J. 1996. Phytase. Adv. Appl. Microbiol. 42: 263-303 https://doi.org/10.1016/S0065-2164(08)70375-7
  37. Wyss, M., Brugger, R., Kronenberger, A., Remy, R., Fimbel, R., Oesterhell, G., Lohmarm, M. and van Loon A. P. G. M. 1999. Biochemical characterization of fungal phytases (myo-inositol hcxakisphosphate phosphohydrolases); catalytic properties. Appl. Environ. Microbiol. 65: 367-373
  38. Yanke, L. J., Bae, H. D., Selinger, L. B. and Cheng, K. J. 1998. Phytase activity of anaerobic ruminal bacteria. Microbiology 144: 1565-1573 https://doi.org/10.1099/00221287-144-6-1565
  39. Yanke, L. J., Selinger, L. B. and Cheng, K. J. 1999. Phytase activity of Selenomonas ruminantium: a preliminary characterization. Lett. Appl. Microbiol. 29: 20-25 https://doi.org/10.1046/j.1365-2672.1999.00568.x
  40. Zhou, J. R. and Erdman, J. J. W. 1995. Phytic acid in health and disease. Crit. Rev. Food Sci. Nutr. 35: 495-508 https://doi.org/10.1080/10408399509527712

Cited by

  1. Optimization of Culture Conditions to Produce Phytase from <i>Aspergillus tubingensis SKA</i> vol.08, pp.07, 2017, https://doi.org/10.4236/fns.2017.87052