A Modified Random Early Detection Algorithm: Fuzzy Logic Based Approach

  • Published : 2005.09.01

Abstract

In this paper, a fuzzy logic implementation of the random early detection (RED) mechanism [1] is presented. The main objective of the proposed fuzzy controller is to reduce the loss probability of the RED mechanism without any change in channel utilization. Based on previous studies, it is clear that the performance of RED algorithm is extremely related to the traffic load as well as to its parameters setting. Using fuzzy logic capabilities, we try to dynamically tune the loss probability of the RED gateway. To achieve this goal, a two-input-single-output fuzzy controller is used. To achieve a low packet loss probability, the proposed fuzzy controller is responsible to control the $max_{p}$ parameter of the RED gateway. The inputs of the proposed fuzzy controller are 1) the difference between average queue size and a target point, and 2) the difference between the estimated value of incoming data rate and the target link capacity. To evaluate the performance of the proposed fuzzy mechanism, several trials with file transfer protocol (FTP) and burst traffic were performed. In this study, the ns-2 simulator [2] has been used to generate the experimental data. All simulation results indicate that the proposed fuzzy mechanism out performs remarkably both the traditional RED and Adaptive RED (ARED) mechanisms [3]-[5].

Keywords

References

  1. S. Floyd and V. Jacobson, 'Random early detection gateways for congestion avoidance,' IEEE/ACM Trans. Networking, vol. 1, no. 4, pp. 397-413, Aug. 1993 https://doi.org/10.1109/90.251892
  2. The Network Simulator-ns-2 homepage, available at http://www.isi.edu/nsnam/ns/
  3. W. Feng, D. Kandlur, D. Saha, and K. Shin, 'Techniques for eliminating packet loss in congested TCP/IP network,' U. Michigan CSE-TR-349-97, Nov. 1997
  4. W. Feng, D. Kandlur, D. Saha, and K. Shin, 'A self configuring RED gareway,' in Proc. IEEE INFOCOM'99, Mar. 1999
  5. S. Floyd, R. Gummadi, and S. Shenker, 'Adaptive RED: An algorithm for increasing the robustness of RED,' Technical Report, 2001
  6. V. Jacobson, 'Congestion avoidance and control,' in Proc. ACM SIGCOMM'98, Aug. 1998, pp. 314-329
  7. M. May, J. Bolot, C. Diot, and B. Lyles, 'Reasons not to deploy RED,' in Proc. IWQoS'99, June 1999, pp. 260-262 https://doi.org/10.1109/IWQOS.1999.766502
  8. W. Feng, D. Kandlur, D. Saha, and K. Shin, 'BLUE: A new class of active queue management algorithms,' U. Michigan CSE-TR-387-99, Apr. 1999
  9. T. Ott, T. Lakshman, and L. Wong, 'SRED: Stabilized RED,' in Proc. IEEE INFOCOM'99, 1999
  10. S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, 'REM: Active queue management,' IEEE Network, May/June 2001
  11. B. Wydrowski and M. Zukerman, 'GREEN: An active queue management algorithm for a self managed Internet,' in Proc. IEEE ICC 2002, New York, vol. 4, 2002, pp. 2368-2372 https://doi.org/10.1109/ICC.2002.997268
  12. R. Pan, V. Prabhakar, and K. Psounis, 'Choke: A stateless active queue management scheme for approximating fair bandwidth allocation,' in Proc. IEEE INFOCOM 2000, Tel Aviv, Israel, vol. 2, Mar. 2000, pp. 942-951
  13. S. Ghosh, Q. Razouqi, H. J. Schumacher, and A. Celmins, 'A survey of recent advances in fuzzy logic in telecommunications networks and new challenges,' IEEE Trans. Fuzzy Syst., vol. 6, no. 3, pp. 443-447, 1998 https://doi.org/10.1109/91.705512
  14. B. Bensaou, S. T. C. Lam, H.-W. Chu, and D. H. K. Tsang, 'Estimation of the cell loss ratio in ATM networks with a fuzzy system and application to measurement-based call admission control,' IEEE/ACM Trans. Networking, vol. 5, no. 4, pp. 572-584, 1997 https://doi.org/10.1109/90.649517
  15. V. Catania, G. Ficili, S. Palazzo, and D. Panno, 'A comparative analysis of fuzzy versus conventional policing mechanism for ATM networks,' IEEE/ACM Trans. Networking, vol. 4, pp.449-459, 1996 https://doi.org/10.1109/90.502243
  16. T. D. Ndousse, 'Fuzzy neural control of voice cells in ATM networks,' IEEE J. Select. Areas Commun., vol. 12, no. 9, pp.1488-1494, 1994 https://doi.org/10.1109/49.339916
  17. C. Douligeris and G. Develekos, 'A fuzzy logic approach to congestion control in ATM networks,' in Proc. IEEE ICC'95, Seattle, WA, vol. 3, June 1995, pp. 1969-1973 https://doi.org/10.1109/ICC.1995.524539
  18. A. Pitsillides and Y. A. Sekercioglu, 'Fuzzy logic control of cell loss in asynchronous transfer mode (ATM),' in Proc. Australian Telecommun. Network App. Conf., Clayton, Australia, Dec. 1994, pp. 249-254
  19. R.-G. Cheng and C.-J. Chang, 'Design of a fuzzy traffic controller for ATM networks,' IEEE Trans. Networking, vol. 4, pp. 460-469, 1996 https://doi.org/10.1109/90.502244
  20. M. H. Yaghmaee, M. Safavi, and M. B. Menhaj, 'A novel fuzzy traffic controller for ATM networks,' in Proc. IEEE ISPACS'98, Melbourn, Australia, 1998, pp. 199-203
  21. M. H. Yaghmaee, M. Safavi, and M. B. Menhaj, 'A high performance fuzzy traffic controller for ATM networks,' in Proc. IEEE ATM Workshop'99, Kochi, Japan, 1999, pp. 379-384 https://doi.org/10.1109/ATM.1999.786885
  22. M. H. Yaghmaee, M. Safavi, and M. B. Menhaj, 'A fuzzy connection admission controller for ATM networks,' in Proc. IEEE ISPACS'99, Pucket, Thailand, 1999
  23. M. H. Yaghmaee, M. Safavi, and M. B. Menhaj, 'An efficient fuzzy based traffic policer for ATM networks,' IEICE Trans. Commun., vol. E83-B, no.1, pp. 10-19, 2000
  24. M. H. Yaghmaee, M. Safavi, and M. B. Menhaj, 'An intelligent usage parameter controller based on dynamic rate leaky bucket for ATM networksm,' Elsevier Science J. Computer Networks, vol. 32, pp. 17-34, 2000 https://doi.org/10.1016/S1389-1286(99)00122-X
  25. M. H. Yaghmaee, M. Safavi, and M. B. Menhaj, 'A novel FLC based approach for ATM traffic control,' Elsevier Science J. Computer Networks, vol. 36, no. 5/6, pp. 643-658, 2001 https://doi.org/10.1016/S1389-1286(01)00181-5
  26. A. R. Bonde and S. Ghosh, 'A comparative study of fuzzy versus fixed threshold for robust queue management in cell-switching networks,' IEEE/ACM Trans. Networking, vol. 2, no. 4, pp. 337-344, 1994 https://doi.org/10.1109/90.330414
  27. M. P. Fernandez, A. de C. P. Pedroza, and J. F. de Rezende, 'QoS provisioning across a DiffServ domain using policy-based management,' in Proc. GLOBECOM 2001, San Antonio, USA, Nov. 2001
  28. C. Chrysostomou, A. Pitsillides, G. Hadjipollas, A. Sekercioglu, and M. Polycarpou, 'Fuzzy logic congestion control in TCP/IP best-effort networks,' in Proc. ICTTA 2004, Damascus, Syria, Apr. 2004, pp. 19-23
  29. M. P. Fernandez, A. de C. P. Pedroza, and J. F. de Rezende, 'Optimizing fuzzy controllers with genetic algorithms for QoS improvement,' in Proc. ITS 2002, Natal, Brazil, 2002
  30. C. Chrysostomoul, A. Pitsillides, L. Rossides, M. Polycarpou, and A. Sekercioglu, 'Congestion control in differentiated services networks using fuzzy-RED,' IFAC J. Control Eng. Practice, vol. 11, no. 10, pp. 1153-1170, 2003 https://doi.org/10.1016/S0967-0661(03)00052-2
  31. L. X. Wang, A Course in Fuzzy Systems and Control, NJ: Prentice-Hall, 1997
  32. S. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss, 'An architecture for differentiated services,' IETF RFC 2475, 1998
  33. K. Nichols, V. Jacobson, and L. Zhang, 'A two-bit differentiated services architecture for the Internet,' IETF RFC 2638, July 1999
  34. T. Li and Y. Rekhter, 'A provider architecture for differentiated services and traffic engineering (PASTE),' IETF RFC 2430, Oct. 1998
  35. J. S. Turner, 'New direction in communication,' in Proc. Int. Zurich Seminar Digital Commun., Zurich, 1986
  36. J. Heinane and R. Guerin, 'A single rate three color marker,' IETF RFC 2697, Sept. 1999
  37. W. Fang, N. Seddigh, and B. Nandy, 'A time sliding window three color marker (TSWTCM),' IETF RFC 2859, June 2000
  38. W. Feng, D. D. Kandlur, D. Saha, and K. Shin, 'Adaptive packet marking for providing differentiated services in the Internet,' in Proc. Int. Conf. Network Protocols, Austin, TX, 1998, pp. 108-117 https://doi.org/10.1109/ICNP.1998.723731