Cooperative Synchronization and Channel Estimation in Wireless Sensor Networks


Abstract

A critical issue in applications involving networks of wireless sensors is their ability to synchronize, and mitigate the fading propagation channel effects. Especially when distributed 'slave' sensors (nodes) reach-back to communicate with the 'master' sensor (gateway), low power cooperative schemes are well motivated. Viewing each node as an antenna element in a multi-input multi-output (MIMO) multi-antenna system, we design pilot patterns to estimate the multiple carrier frequency offsets (CFO), and the multiple channels corresponding to each node-gateway link. Our novel pilot scheme consists of non-zero pilot symbols along with zeros, which separate nodes in a time division multiple access (TDMA) fashion, and lead to low complexity schemes because CFO and channel estimators per node are decoupled. The resulting training algorithm is not only suitable for wireless sensor networks, but also for synchronization and channel estimation of single- and multi-carrier MIMO systems. We investigate the performance of our estimators analytically, and with simulations.

Keywords

References

  1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, 'A survey on sensor networks,' IEEE Commun. Mag., vol. 40, pp. 102-114, Aug. 2002
  2. D. N. Jayasimha, S. S. Iyengar, and R. L. Kashyap, 'Information integration and synchronization in distributed sensor networks,' IEEE Trans. Syst., Man, Cybern., vol. 21, pp. 1032-1043, Sept./Oct. 1991 https://doi.org/10.1109/21.120056
  3. E. H. Callaway, Wireless Sensor Networks-Architectures and Protocols, Auerbach, 2004
  4. J. N. Laneman and G. W. Wornell, 'Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks,' IEEE Trans. Inform. Theory, vol. 49, pp. 2415-2425, Oct. 2003 https://doi.org/10.1109/TIT.2003.817829
  5. G. J. Foschini and M. J. Gans, 'On limits of wireless communication in a fading environment when using multiple antennas,' Wireless Pers. Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998 https://doi.org/10.1023/A:1008889222784
  6. G. J. Foschini, 'Layered space-time architecture for wireless communication in a fading environment when using multi-element antenna,' Bell Labs. Tech. J., vol. 1, pp. 41-59, 1996 https://doi.org/10.1002/bltj.2015
  7. V. Tarokh, H. Jafarkhami, and A. R. Calderbank, 'Space-time block codes from orthogonal designs,' IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, July 1999 https://doi.org/10.1109/18.771146
  8. X. Ma, L. Yang, and G. B. Giannakis, 'Optimal training for MIMO frequency-selective fading channels,' IEEE Trans. Wireless Commun., vol. 4, pp. 453-466, Mar. 2005 https://doi.org/10.1109/TWC.2004.842998
  9. R. Negi and J. Cioffi, 'Pilot tone selection for channel estimation in a mobile OFDM system,' IEEE Trans. Consumer Electron., vol. 44, no. 3, pp. 1122-1128, Aug. 1998 https://doi.org/10.1109/30.713244
  10. Q. Sun, D. C. Cox, and H. C. Huang, 'Estimation of continuous flat fading MIMO channel,' IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 549-553, Oct. 2002 https://doi.org/10.1109/TWC.2002.804178
  11. P. H. Moose, 'A technique for orthogonal frequency division multiplexing frequency offset correction,' IEEE Trans. Commun., vol. 42, pp. 2908-1314, Oct. 1994 https://doi.org/10.1109/26.328961
  12. M. Morelli and U. Mengali, 'Carrier-frequency estimation for transmissions over selective channels,' IEEE Trans. Commun., vol. 48, no. 9, pp. 1580-1589, Sep. 2000 https://doi.org/10.1109/26.870025
  13. X. Ma, C. Tepedelenlioglu, G. B. Giannakis, and S. Barbarossa, 'Non-data-aided carrier offset estimation for OFDM with null subcarriers: Identifiability, algorithms, and performance,' IEEE Trans. Commun., vol. 19, no. 12, pp. 2504-2515, Dec. 2001
  14. Y. D. Kim, J. K. Lim, C. H. Shu, E. R. Jung, and Y. H. Lee, 'Carrier frequency estimation for transmissions with antenna diversity,' in Proc. VTC 2002, vol. 3, 2002, pp. 1569-1573 https://doi.org/10.1109/VTC.2002.1002881
  15. J. Kivinen, T. O. Korhonen, P. Aikio, R. Gruber, P. Vainikainen, and S. G. Haggman, 'Wideband radio channel measurement system at 2 GHz,' IEEE Trans. Instrum. Meas., vol. 48, issue 1, pp. 39-44, Feb. 1999 https://doi.org/10.1109/19.755057
  16. X. Ma, M.-K. Oh, G. B. Giannakis, and D.-J. Park, 'Hopping pilots for estimation of frequency-offset and multiantenna channels in MIMO-OFDM,' IEEE Trans. Commun., vol. 53, no. 1, pp. 162-172, Jan. 2005 https://doi.org/10.1109/TCOMM.2004.840663
  17. M. Morelli and U. Mengali, 'An improved frequency offset estimator for OFDM applicatins,' IEEE Commun. Lett., vol. 3, no. 3, pp. 75-77, Mar. 1999 https://doi.org/10.1109/4234.752907
  18. G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., Baltimore, MD: Johns Hopkins Univ. Press, 1996
  19. J. G. Proakis, Digital Communications, 4-th ed., McGraw-Hill, 2000
  20. M. L. Sichitiu and C. Veerarittiphan, 'Simple, accurate time synchronization for wireless sensor networks,' in Proc. IEEE WCNC 2003, vol. 2, Mar. 2003, pp. 1266-1273 https://doi.org/10.1109/WCNC.2003.1200555
  21. Z. Wang and G. B. Giannakis, 'Wireless multicarrier communications: Where Fourier meets Shannon,' IEEE Signal Processing Mag., vol. 47, pp. 29-48, May 2000
  22. K. Yao, R. E. Hudson, C. W. Reed, and D. Chen, 'Blind beamforming on a randomly distributed sensor array system,' IEEE J. Select. Areas Commun., vol. 16, pp. 1555-1567, Oct. 1998 https://doi.org/10.1109/49.730461
  23. T. Pollet, M. Van Bladel, and M. Moenecley, 'BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,' IEEE Trans. Commun., vol. 43, no. 234, pp. 191-193, Feb./Mar./Apr. 1995 https://doi.org/10.1109/26.380034