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Design of Low Update Rate Phase Locked Loops with
Application to Carrier Tracking in OFDM Systems

Dan Raphaeli and Oded Yaniv

Abstract: In this papei', we develop design procedures for car-
rier tracking loop for orthogonal frequency division multiplexing
(OFDM) systems or other systems of blocked data. In such commu-
nication systems, phase error measurements are made infrequent
enough to invalidate the traditional loop design methodology which
is based on analog loop design. We analyze the degradation in the
OFDM schemes caused by the tracking loop and show how the
performance is dependent on the rms phase error, where we dis-
tinguished between the effect of the variance in the average phase
over the symbol and the effect of the phase change over the symbol.
We derive the optimal tracking loop including optional delay in the
loop caused by processing time. Our solution is general and in-
cludes arbitrary phase noise and additive noise spectrums. In order
to guarantee a well behaved solution, we have to check the design
against margin constraints subject to uncertainties. In case the op-
timal loop does not meet the required margin constraints subjected
to uncertainties, it is shown how to apply a method taken from con-
trol theory to find a controller. Alternatively, if we restrict the so-
lution to first or second order loops, we give a simple loop design
procedure which may be sufficient in many cases. Extensions of the
method are shown for using both pilot symbols and data symbols
in the OFDM receiver for phase tracking. We compare our results
to other methods commonly used in OFDM receivers and we show
that a large improvement can be gained.

Index Terms: Carrier tracking, loop design, low rate digital PLL,
orthogonal frequency division multiplexing (OFDM), phase locked
loop (PLL), synchronization.

I. INTRODUCTION

The phase locked loop (PLL) principle has been successfully
used for decades for tracking the carrier phase and the bit tim-
ing. Digital implementation of PLL in most cases is based on
sampling frequency which is much higher than the loop band-
width, and the PLL behavior can be approximated by its analog
counterpart. There are situations which invalidate this assump-
tion, and new design methods need to be developed. Such situ-
ations occur in cases where the loop bandwidth is desired to be
as wide as possible. There are many possible variations on how
the PLL is sampled. In this paper we are interested in the case
where continuous time phase is tracked by mixed analog/digital
PLL in which the phase detector output is sampled in low rate
and fed to the loop filter. The sampling of the phase detector
is undesired but is an unavoidable consequence of the commu-
nication system if the data is blocked and information about the
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phase can be extracted only at the end of a block. As an example
to such a system is orthogonal frequency division multiplexing
(OFDM) receivers. Another example is a system which uses
block code, and the uncoded symbols are not reliable enough to
be used in a PLL, but after decoding, the phase of the block can
be estimated using the decoded symbols. In the examples above
the continuous time section of the analog/digital PLL is replaced
by a high sampling rate digital implementation. Since the sam-
pling rate (of the digital front-end, rather than the matched filter
output) is high relative to the loop bandwidth, the approximation
by continuous waveforms is good for all practical purposes.

The loop filter is designed under the conditions of minimizing
its rms phase error at the sampling point, with given phase noise
spectrum and additive noise level. In some cases, the optimal
design fails to satisfy restriction of gain and phase margins with
required gain uncertainty.

A method from control theory is used to derive a nearly op-
timal loop filter minimizing the rms phase error like the loop
filter above, but with the additional restriction to satisfy gain
and phase margins with some gain uncertainty. After the high
order solution (near optimal solution) is described, restricted or-
der solutions are also given. First order solutions have closed
form when the delay is large enough, and for second order so-
lutions easy to use graphs are given for extracting the range in
which the optimal solution can be searched. A similar method
had been used to treat a related problem of loop design in pres-
ence of a delay [1].

Many papers have been devoted to the problem of phase noise
effect in OFDM and synchronization loops. Several papers have
investigated the effect of phase noise on OFDM [2]-[6] and
show that the sensitivity of OFDM is orders of magnitude more
than single carrier schemes with the same bit rate. However,
none of these papers considered carrier tracking loop for relax-
ing of the need of very stable local oscillators. The common
solution is to use differential detection or phase extracted from
the pilot signal within the symbol and slow AFC loop [4], [7],
[8]. Differential detection is known to lose at least 3 dB in per-
formance for QPSK or QAM. Mignone [9], used phase estima-
tion from the previous symbol to be used in the current symbol.
Managing to obtain to get good phase estimate extracted from
pilot signals requires that the signal to noise is good enough,
which is not the case for relatively small FFT sizes (e.g., 64
points). The assumption that the carrier phase does not vary
during the two symbol period, as in [9] or in differential detec-
tors, requires a very low level of phase noise.

By using a properly designed loop, it is possible to consid-
erably reduce the degradation from phase noise. We show that
OFDM fits the model used in this paper; therefore, the design
techniques can be applied. The phase detector estimates can be
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obtained either from the data of the previous symbol or from pi-
lot symbols. Improvements for the solution for phase estimation
in OFDM are also presented. In the improved version, a loop is
used for generating preliminary phase estimation, and then the
phase estimation is improved by adding non-causal information
from pilot symbols, or, by passing the preliminary phase estima-
tion through an additional, non-causal, filter.

The degradation of OFDM receiver from phase noise is due
to two effects [3], [4]. The first is the average phase error over
the symbol, which rotates the constellation of all subchannels.
The second is the phase change over the symbol which causes
loss in orthogonality. The latter is similar in its effects to ad-
ditive Gaussian noise. Though the optimization in this paper
is done with respect to the average phase error, we observe in
many cases that using the loop significantly decreased the phase
change over the symbol. Loop optimization with regard to the
phase change is not treated here, but it is reasonable to assume
that minimizing the average phase error lead, at least approxi-
mately, to minimization of the phase change.

II. STATEMENT OF THE PROBLEM

A. Tracking Loop for OFDM: Derivation of Phase Error Indi-
cation

Assuming perfect timing synchronization during a symbol pe-
riod T, the complex envelope of the transmitted OFDM signal
can be expressed as [3]

N—1
s(t) = /O Z amel?™ P 0<t<T 1

m=0

where a,, is the data symbol of the m frequency bin, and 8(t)
is the carrier phase, which is common to all subcarriers. We
assume that at the receiver front end there is a phase derotator
which multiplies the signal by e=#%(), where 4(¢) is the esti-
mated phase by the loop. Let us denote the phase error by

e(t) = 0(t) — 6(t)

then the signal at the FFT output of the receiver can be written
as

N-1
me=axlohe + > amIe_mhim + Ny V)
m=0,m#k

where

Iy = L i2m i teie(t) gy
- — e
k=7 . € )

hi is the channel attenuation of the k-th subcarrier, and Ny, is
the thermal noise contribution.

The first term in (2) is the useful signal, ayhy,, which was ro-
tated by e, (), the average value of e(t) during the symbol. The
phase of I is well approximated by e, (n) as will be shown in
the following. The second term is called inter bin interference
(IBI) and results from the phase error change over the symbol.
It is difficult to extract information from the IBI regarding the

phase error. However, the first term can be used to extract infor-
mation about the average value, e,(n). The phase detector used
in this paper which is based on the approximation of the phase
error for small errors is

1 N-1
b = NEo m;) Im{rnal,hl}. 3

Here, we assumed that a,,, has been decoded successfully, and
hy is well estimated. High error rate in a,, can be tolerated
since N phase estimates are averaged. Alternatively, a,, after
re-encoding can be used [9], or pilot symbols with known a,,
can be used. The scaling factor Ey is the total energy in the
symbol, Ex = + ZZ;; |G| 2| hm |2, Which for large N can be
approximated by the average symbol energy E; multiplied by
the average channel gain B, = 3 Zf:]l;é |-

B. Degradation of Performance Due to Phase Errors

The degradation in the OFDM performance is due to both
eq(n) which cause rotation in the constellation and e.(t) =
e(t) — eq(n) which causes the IBI. We shall analyze the effect
of e.(t) on the performance. Let us analyze the second term in

2

det 1 e T oopkom,
ve = 3 amhm/ eI 2m T teie(t) gy

m=0,m#k 0
1 N-1 T . ]

= = amhm/ eI tedee(t) gy
Tmzo,m;ék 0
. N-1

~ % amhim eI =T te (t)dt
m=0,m#k 0
N-1 1

= jZamhm?/ eI T e (1) dt
m=0 0

The approximation assumes |e. ()} << 1, and the last equality
results from fg ec(t)dt = 0. Since a,, are uncorrelated,

o def

ag, =

VAR[Z/kl

N-1 2
= EE,-E|)
n=0

C)

1 (T n
T/ eI?mTle (t)dt
0

where n stands for £ —m. Assuming that the energy contribution
of the frequencies of e.(t) above (N — 1)/T can be neglected,
then

012, = VAR[I/k]
o I 2
~ BEE|Y |7 [ e | o)
n=0 Y

We can then use the Parseval relation to get

T
51? /0 ei(t)dt}

02 =E,E,-F
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Fig. 1. The sampled PLL linear approximated feedback system.

Thus, the signal to IBI ratio is
EE, 2

o2 o

%—/OT eﬁ(t)dt}

The influence of e (t) on Iy is negligible since it contributes
only to the second order term in the following series expansion

where

2 def
—

1 7T 1 [T
JA / ety — 1 4 & / le(t) + O(e(t)?)]dt.
T 0 T 0

III. LOOP DESIGN

A. Mathematical Model

Since the sampling rate of the front-end receiver is much
higher than the symbol rate, the OFDM receiver operation can
be well approximated by a matched filter operating on a contin-
uous signal. The received samples are phase-corrected by mul-
tiplying by a numerically implemented oscillator fed by a loop
filter, where this loop filter is fed by low rate phase detector
outputs. Both this oscillator and loop filter are implemented in
the high sampling rate. In the linear model of the PLL, the nu-
merically controlled oscillator is equivalent to integration, and
the cascade of the actual loop filter and integrator is represented
by a loop filter . For the analytic convenience, the loop fil-
ter which operates in the front-end sampling rate is approxi-
mated by a continuous filter F'(s). The actual implementation is
purely digital, where F'(s) will be implemented digitally by s to
z transform (where z in this case is the inverse delay element of
a front end high sampling rate, not the symbol rate). The linear
model of the PLL is presented in Fig. 1 where,

e T denotes a periodic sampling with sampling period T (in
the OFDM case it is the length of OFDM symbol);

e W denotes a decimating filter. In this paper we choose

an integrator along a period T, and its transfer function is
W(s) = =7
A denotes the phase detector gain;
F(s) denotes a linear time invariant filter to be designed; and
6(t) and n(t) are mutually uncorrelated zero mean stochas-
tic signals with known spectral densities, modeled by sta-
ble minimum phase linear time invariant systems driven by
white noise.

Using the notation [z]* for the sampled representation of the

continuous signal z(t) with sampling period T [12, p. 266] (that

is z(t) multiplied by the train of pulses m(t) = Yoo __ 4(¢
kT)), the error signal e of the system in Fig. 1 is the solution of
the following equation

e(s) 0(s) = F(s) [W(Ae +n)]" (s)
= 0(s) = F(s) [WAe]" (s) — F(s) [Wn]" (s).

Our problem is to design a loop filter, F'(s), which minimizes

the phase error signal, e(t), subject to the following performance

index, data, and constraints.

o The power spectral density of the noise, n, and phase noise,
0, are ¢,,(w) and ¢g(w), respectively, and it is assumed that
@ and n are uncorrelated.
The phase detector gain, A, is fixed but only known to belong
to an interval A € [A;, A5, where A, and A, are known.
Variations in A are the result of change in symbol energy
E'n or fading.

e The performance index is to minimize the rms value of

nT+T

ea(n) = TJar
a symbol.

e The open loop response should have some gain and phase
margins in order to guarantee a well damped closed loop re-
sponse and stability in case of some gain uncertainty. These

margins are defined by a constant -y such that

’ L*(jw)
1+ L*(jw)

e(t)dt, the average phase error during

’ <7, Yw >0, A€ [A, Ay
L*(s) =

B. Derivation of Optimal Loop—No Margins Specified
From (6),

[AW F]*(s).

e+ F[WAe]" = 60— F[Wnl",
. W) [WEF]" [Wn]*
(Wel 1+ [AWF] 14 [AWEF]"
. wer L [wa* 1
140 1+4L* A
We want to minimize the rms value of e, (n) = [We|", which is
oy {% / __ I[We]*(jw)!deJ
| L[| L) Wl Gw) (W] (jw) |
=P o /_T AL+ L*(Gw) 1+ L*(jw) d”}
) W) o) |° | WO Gw) |
1 + L*(jw)) 1+ L*(jw) '

Let us denote by [Wnl(z), [W](z), and L(z) the z-transform
representation of the sampled signals, [Wn|*(s), [W6]*(s), and
the impulse response of AW F(s), respectively. Using the

equality L(z = ") = L*(s) [12, p. 280] we get
=gl [HAIO
215 Jizj=1 | A1+ L(2))

¥4
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T W] (2) |? dz
T on ]fz]_l T+LGe)| =
Tt go(2) [°dz
21j Jiy=1 |1+ L(2)| =
Tt L(z)n(z) |* dz
275 J)zj=1 A(l+ L(z))} =z

where ¢,, and ¢y are the following spectral factorization

E[|[Wn] (2)]°] = ¢n(2)gn(z "),
E{| W] (2)"] = ¢o(2)d0(2 7).

Since L o A, the argument of each integral in (6) in low fre-
quencies is approximately proportional to 1/A42, and since in
general the spectral density of ¢y is concentrated in low fre-
quencies and that of ¢,, is white, the following assumption is
valid
Assumption IIL1: For a given F(s), the maximum of o2 (A4)
over A € [A1, Ao is 02(Ay).
This assumption means that a solution that minimizes o.(A;)
subjected to all other constraints is the solution to our problem.
Using the notation

L(z) 1

Qe =170 P90 = 1

(6)

where Q(z) is a stable rational function with poles inside the
unit circle, gives (4 = 1 is used for simplicity)
2 dz

[INCEICTE
+ fuzl 160(2) — 66(2)Q(2)

orjTo? =

242 )

z

By simple completion to square it can be shown that

£ |

+u(a)a() — alalz ) E @

2

27TjTO’2 = a(z) + B(2)Q(z)

where 3(z) and «(z) satisfy the following equations

B(z)B(z™Y) = ¢nl(2)pn(z7") + d0(2)¢e(z71) (9
a(z7NB(z) = —go(2)pa(z71). (10)

Q(z) has the same zeros outside the unit circle as L(z) and these
can only be pure delays due to the process W and the delay in
the feedback loop. We, therefore, denote

Q(2) = z7*Qo(2) (11)

where k represents the delay and Qo(z) is minimum phase.

Hence,
%ﬂ:l (

+hu(ela") — alzlaG:) ) 2. a2

2

2mjTo? = *a(z) + B(2)Qo(2)

After removing terms not depending on Qg(z), it is clear that

Qo(z) which minimizes o2 is the same one which minimizes

dz

ol o fjl (|zka(z) +ﬂ(z)Q0(z)|2) — (13)
zl=1 .

Since B(z)* = B(z7!) it can be chosen as minimum phase (no
zeros and poles outside the unit circle). Thus, (13) can be split
into its causal and anti-causal parts

dz

= (@ e+ 861 T ab

where z°a(z) = a4 (2) + a_(2) is the series expansion of
zFa(z) with terms inside and outside the unit circle, respec-

tively. Therefore, the optimal Qg is

— _a+(z) def
QO - ,B(Z) = Qopt(z) (15)
and the optimal open loop, Ly (2), is by (6) and (11)
—k
Lopt(2) = ——— o+ (2) (16)

Bz) + 27 Fay(2)

The same results, without explicit consideration of the expected
delays, can be found in many papers, for example in {10].

An example: ¢9 = =, ¢,, = v/Np and one delay (k = 1).
Then,

1 1
z—1271-1
2N0+1—N0(Z+Z_1)

B(2)B(z7Y) = No+

(z—=1(z"1-1)
Denoting 3(z) = 42— =B where A > 0 and |A/B| < 1, im-
. 1—2z
plies
4 L ClVIFANG o 14 VIFANG

B 2 T 2

s 11

za(z) = 1;_11)1_Z

I A
T 1—-z1A4z-B
1B
T 1—z1 A—-Bz1
= « L

!

_ a4 o 1
= Qo= B(z) Az"1—-B
—ml L =1

= L, = l—z =

Pt(Z) /8(2) T 21 1_i_1 B(l _ Zvl)

- 1/B

= Fopt(s) = /T

The filter, F,pt(s), such that [WF,,.(s)]" (s) = Lopt(2) is
the solution we seek, only if the closed loop satisfies the gain
and phase margin constraints, 7, over all A € [A;, A3]. How-
ever if the open loop gain interval is large and/or the desired
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margins are large compared to T, F,,;(s) will not be a satisfac-
tory solution. It might even be an unstable solution for possible
higher open loop gains. In the next paragraph it is shown how
to synthesize F'(s) by modifying Q.

C. Second Synthesis Method—with Margin Specs
The gain and phase margin specifications can be expressed as
‘ L(2) A%Ll (2)
A
1+ L(2) 14+ £-L1(2)
VAec [A],AQ], |Z| =1

<

an

where L1 (z) is the open loop when A = A;. Let (1 be the new
closed loop response that will satisfy the margins and define A
by

A
Q1= Qopt — %, where A = A;. (18)
Then (14) for Qg = @, gives
ok = j{ AL, (19)
|z|=1 z

which by assumption III.1 reduces our problem to design a sta-
ble A(z) which minimizes (19) subjected to the constraint (17),
which is

AL
1+ ALl

fﬁc?l(z)

14+ (A-1)Q1(2)
VA € [1,A3/Aq], |z| =1.

<

(20)

Substituting (18) into (20) gives

AQopt(2) = A(2) Bé) <;
1 -+ (A — 1)Qopt(z) - A(Z) g&% o
VA€ [1,A2/Al], |2 = 1.

2y

Optimization problem (19) subjected to (21) reduces our opti-
mization problem into a simpler problem, in the sense that it
guarantees stability, it has less optimization parameters and it
can be solved to find suboptimal solutions within the framework
of the quantitative feedback theory (QFT) [11]. A more detailed
description of using the technique is given in the example.

Having A, Qope, and 5, Q1 can be calculated using (18). L(z)
is then calculated by (6) where by assumption 1.1 Q = Q.
Since L(z) is the sampled transfer function of F'(s) using a zero
order hold (ZOH), it can be calculated from L(z), how to do it
and conditions under which it is unique are given in [12].

C.1 Practical Design Example

This is a practical design example. A very high speed, 155
Mbps, microwave link at around 30 GHz is designed. Let us
assume an OFDM system is used, with 48 carriers with 16-QAM
and code rate 3/4 and a symbol duration T' = 144/155 x 1076,
We assume that the channel is flat (the shape of the channel has
no effect on this example). The required minimum Ej, /Ny of

401
¢ »=100000
301

{ 200000
20

R 400000

-39 : . )
=270 —-135 -90 —45
deg

—225 —180

Fig. 2. The Nichols plot of the optimal open loop for A = A; without
considering margin specs.

the information bits is 10 dB. The normalized noise two-sided
spectral density is ¢, = —92 dB and the phase spectral density
(units are radians and seconds) is well approximated by ¢ =
(2.75 x 107 /w?)? at the region of interest. The gain, A, is any
value in the interval A € [1,2]. The margins constraint is of the

form ‘HLL < 3 dB, which guarantees 45° phase margin and 5

dB gain margin for A = 2 and 11 dB for A = 1. These margins
are even less that the lowest one can choose for a proper PLL
operation [13].

The optimal filter, L(z), and other parameters involved, cal-
culated by the algorithm described above for A = 1 ignoring
the margin specifications are

1.22002 — 0.7399

Lz) = 22 2241
_0.051292% — 0.04z +0.01334
s o= 22 —-2241
o = —0.0625722 + 0.037952
- 22 —-2z41
bn(z) = 0.02606
22 4+ 0.47372 4+ 0.0186
9o(2) = 60.6(z — 1)2
e = 2.53°

where ¢, (z) and ¢y(z) were derived using the appendix.

Using the Bode or the Nichols plot, it can be shown that the
gain and phase margins are approximately 37° and 6 dB, respec-
tively (see Fig. 2), which does not satisfy the phase margin 45°
and gain margin 5 dB for all A € [1, 2], as required by the spec-
ified phase margin parameter v = 3 dB. For example, if A = 2,
the open loop gain margin is almost zero, therefore the PLL will
be unstable.

The solution of (21) for a given z = z; and A is a circle in
the complex plane. If A(zp) is inside that circle, the inequality is
satisfied for that A and zg. The intersection of all of these circles
for the allowed A’s is the valid region for A(z0). That is, only if
A(zo) belongs to this region then (21) is satisfied for that z = zg.
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Fig. 3. Rigid heavy line is the amplitude versus phase plot of a shaped
Az) = A(e?¥). The allowed regions for A(e’*) at the frequency w
marked above each figure is inside the closed curves or below it if
it is open. The value of A\(e’¥) is marked by a circle, note that it is
inside its allowed region.

These regions, for several zy values, are shown in Fig. 3, which
also include the plot of a chosen transfer function A(z) such
that A(zp) is inside its allowed region for each zp. Choosing
a transfer function satisfying restrictions is a well known loop
shaping problem in control theory, see, for example, the QFT
technique [11], although other technique are available.

The controller is calculated by (18) and (6) where Q@ =
Q(A = 1), which gives for Lat A =1,

0.67342% — 0.94522 + 0.3255
23 — 2.65922 4 2.318z — 0.6591
0.6734(z — 0.7976)(z — 0.6060)

(z —1)2(z — 0.6599)

L(z) =

whose Nichols plot, including the margin specs, is shown in
Fig. 4. The phase error result for this controller is o, = 3.64°.
Note that decreasing the sampling time to 50% or less of its
original value guarantees satisfaction of the margins for all un-
certainty by the optimal solution (16). Also its bandwidth is
about 0.8 Mrad/sec which is about 1/T the loop frequency up-
dating. The filter F'(s) can be calculated from L(z), which gives

_2.17(s + 535000) (s + 243000)
B 52 (s + 449000)

F(s)

IV. RESTRICTED ORDER LOOP FILTERS

A restricted order loop filter is a loop filter which has less
poles and zeros than an optimal loop filter. The reasons for us-
ing a restricted order loop filter are (i) reduction of computation
effort in real time; (ii) the design of a restricted order loop fil-
ter may be simpler and faster; and (iii) the restricted order loop
filter may be close enough to an optimal one. The drawback of
using a restricted order loop filter is when (iii) is not satisfied,
therefore produce too much error compared to a non-restricted

30
100000
20}
200000
10}
400000
m L
= 0 800000
1600000
_10 |
720 .
-30 L 1 L 1 R
2370 —225 ~180 -135 -90 —45
deg

Fig. 4. The Nichols plot of L (jw) which satisfies the margin specs.

order design. Two restricted order filters will be described in the
sequel, F(s) = a/s and F(s) = a/s? + b/s.

A. F(s) of the Form a/s

The pulse transfer function of the open loop, L(s), for A =
A1 is

Ala

L1(2)= Z—-l.

(22)

We look for the range of a values for which the PLL is stable
and the margin specification (17) is satisfied. Substitution of
(22) into (17) reduces the specification to the form

Aa
—_ | < = 1.
z—l—i—Aa‘ S VACLE[A],AQ], |Z| 1 23)
Stability requires 0 < Ao < 2. If Aa > 1, (23) is maximum
at z = —1, hence Aa < —7%; and if Aa < 1 (23) is always

satisfied. Therefore, Aa must lie in
0<A(1<—A(1€[A A]
1 ?
=1 1 2

therefore

2y
0<a ———
(147v)A;

and the filter, F'(s), can be any one of the following

2v 1
F(s)= —————, v > As.
(s) viy+1)s 2
Optimization to minimize o2 subjected to this structure can now
be executed on the single parameter v. Clearly for large enough
T and/or low noise with reasonable phase noise, the optimal

U:AQ.
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B. F(s) of the Forma/s* +b/s
The pulse transfer function of the open loop, L(s), for A =

A1 is
(aa + Bs))
32

aT®(z+1)  abT?
2(z-1)2  z-1
a(z+1) ab

B TCE TS 24)

where the subscript ZOH denotes that a ZOH is included and
where

*

L1 (Z) = T

ZOH

(25)

We now look for the range of (a, b) values for which the PLL is
stable and the margin specification (17) is satisfied. Substitution
of (24) in (17) reduces the specification to

’ a(z + 1) + 2ab(z — 1) ‘
2(z —1)2+a(z+1) + 2ab(z — 1)

<7, Vizl=1 (26

which can be replaced, using the bilinear transformation z =

1+jw
7w Oy
a+ 2abw? + j(2ab — a)w
< Yw>0 27
a+ (2ab — 4)w? + j(2ab — a)w =7 Y@= @7)
which is satisfied if and only if for all w > 0
(=406 + v%(2ab — 4)?)w* + (v*(4a2b? — 8a + a?)

—a? —4a’pM)w? +a’(v* — 1) > 0. (28)

The solution of (28) is either (i) the coefficients of w* and w?
are positive or (i) the minimum of the left side of (28) is pos-
itive (the coefficient of w* > 0 and the discriminant of (28) is
negative). For a given b, the range of a due to (i) is

8v* 2y

<a< —— 29

Z—Da+42) ~ S T+ 29
and the range of a due to (ii) is
2y 2 2 2 ’Yz(% - 1)2
a < ———— and (46 - 1)°a“* 4+ 16———qa
e ¢ =Y =)
2

The solution is depicted in Fig. 5 by curves, each curve is the
boundary of the allowed (a, b) values for given 7.

Note that for & > 1, which is guaranteed if the required
phase margin is greater than 28°, conditions (30) includes con-
ditions (29). Thus in practice, conditions (30) is the dominant
condition.

Fig. 5 can be used to find the region for which | 2%~ - AL | < for
phase detector uncertainty A € [A;, Ao]. Slmply shift the upper
bound of the {a, b) region down by 20 log £2 dB. For example,
if 40° phase margin is required with 18 dB gain margin, then

ILa+1) <y
—4 T T T T i T T T T T T T T

=201 : : ab=2y(y+1 BE

th
EN
x
d

a(y+1)2y) " [dB]

Ad
S A0
T

P e No I (VX NV T e R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
b

Fig. 5. Boundary curves of the a,b values that satisfy | £7| < 7.

Marked on the right is the phase and gain margins, deg, GM, for
the appropriate ~.

we first shift down the upper bound of the curve marked 40° in
Fig. 5 by (18—4.5) dB (4.5 dB is reduced because the parameter
~ for 40° guarantees 4.5 dB gain margin). The area below that
curve and above the lower curve marked 40° gives the allowed
(a,b) values. The optimal (a, b) pair(s) can then be calculated

by minimizing o2 over (a, b) values in the appropriate region.

B.1 The Practical Design Example

The design example in Section III-B requires 6 dB uncertainty
and margin v = |L/(1 + L)| < 3 dB which gives the 41.5°
curve of Fig. 5 calculated by v = 1/(2sin(41.5/2)). For these
parameters the largest a(y + 1)/2y) = —17 dB and b = 3.5.
The value of o, for this solution is ¢, = 3.67° which is about
the same as for the solution in Section III-C.1. We repeat the
calculation for a larger uncertainty assuming A € [1, 4], that is,
12 dB uncertainty. In this case, the PI design gives o, which is
larger by 26% than the one designed by the proposed algonthm
in Section III-B.

C. Comparison between First/Second Order Loops for ¢g o< Ulg

aztl o — 2 4+ /3. For the

z—17

From the appendix (31), ¢y
discrete second order open loop

a(z+1) ab

La(z) = 2(z—-12  z2-1

where b is chosen so that L(z) touch the margins conditions
twice. The 7ms value of the phase noise is given in Fig. 6 as a
function of a. The normalization O'(] is the rms phase noise of
the first order open loop L; = %5, where ¢ was chosen such
that L, (z) touch the margins conditions. Clearly for reasonable
phase and gain margins,-using a second order loop (a # 0),
for increasing lock-in range, increase the rms noise by less than
20%. Note that addition of noise, ¢, # 0, reduces this figure
for the relative total rms noise.
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IL(A+D)<y

1 . . ) . . . . : .

0 01 02 03 04 05 06 07 08 09 1

a

Fig. 6. Normalized phase noise for several gain and phase margin val-
ues (marked on top of each curve), the range of a values is all that

satisfy the margin L{jw) < «v where ~ fits the appropriate mar-
) 1+L(Gw)
gins.

V. IMPROVEMENT OF THE METHOD

A. Pilot Assisted Phase Estimation

Until this point we assumed a causal operation of the loop,
which means that the phase error estimation uses the previously
detected symbols a,,. In many cases pilot signals are added to
the OFDM symbol. These are unmodulated sub-carriers which
can be used for phase estimation. An estimate of the average
carrier phase can be extracted from the pilot signals. This causal
information can be combined with the loop estimation of the
average phase to improve the average phase estimation. The
average value of 8(¢) during the symbol will be denoted by 6,.
Let the pilot estimate of 8 be denoted by . 0y = 0, +m
where n; is Gaussian noise with spectrum (1/p)¢2, where p is
the ratio of pilots energy relative to total symbol energy. The
estimate phase which combines the sources of information in an
optimal way is

0.() = abu () + (1 — )8,

where the noise contribution should be summed as independent
random variables. Since we assume statistical independence be-
tween the estimation errors due to the previous symbols to the
error induced by the current symbol noise. Thus the error mean
squared is (an1)? + ((1 — a)e, )?, which is minimized when

A more convenient implementation is to measure the pilot
phase after the correction of the phase by 6, so the pilot is mea-
suring €, = 6, — 8,. Therefore,

a(t) = 0,(t) + (1 — @)é,.
A.1 The Practical Example

Let us assume that there is a pilot with an energy which is
10 dB less than the symbol energy, i.e., —82 dB. The rms phase

§ -—i Q + ) AN 1
-1 T
Aest W
A, A
u
WA o

Fig. 7. The improved feedback system.

error in the pilot phase estimation is 3.34°. Recall that the loop
estimation was 0. = 3.64°, combining these estimates gives an
rms error of 2.46°.

B. Improvement by Non-Causal Filters

The gain and phase margin constraints, the delay and the un-
certainty dictate a suboptimal filter F'(s). It is possible to esti-
mate the phase ¢, by the sum of 6 and u*(kT) during the time
interval [kT, kT + T], see Fig. 7. Then, an optimal filter can
be applied on this first estimate of #, which can even be non-
causal, in order to improve the estimation of # in the sampling
time and/or between them. The optimal filter is applied in open-
loop and its output is given after delay. The loop itself continues
to be causal. Using this method requires storing the frame and
performing the FFT twice, once for the loop and once for the de-
tection, the latter after correction by the new phase estimate. For
our practical example, when the estimated A value is Aggy = 1
and for £ = 0 (no sample delay), the optimal filter (calculated
as described in Section III-B) is Q = O_Og'l%%if_zéj)gf%?g’f% 5
Further improvement can be obtained if a longer delay is as-
sumed. Moreover, the change during the symbol can be im-
proved by replacing Q(z) with Q(s) which can be interpreted
as interpolating filter.

C. Improvement in Phase-Change Error

As derived in Section II-B the OFDM receiver performance is
dependent on both . and .. Although the loop was optimized
with respect to o, we have checked the contribution of the loop
to the reduction of .. If the phase noise process is random
walk, we do not expect an improvement in phase change since
the phase change in a symbol is independent on previous sym-
bols. Only interpolation, as noted in the previous section, can
improve the phase change (dramatically). However, for phase
noise spectrum of higher order, like ¢y o ﬁ, the phase change
can be reduced.

C.1 The Practical Example

The results, for example, 1 are o, = 0.6° with the loop. For
comparison, let us assume a pilot based scheme with AFC to
correct the frequency drift. We assumed a first order AFC op-
erating on the frequency estimate extracted from the pilots. The
bandwidth of the AFC was optimized for minimum .. The re-
sult was o, = 1.29°, about 6 dB difference.
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VL. CONCLUSIONS

We have presented a loop design methodology for cases
where the phase error update rate is much lower than the re-
ceiver sampling rate. For OFDM, most often the symbols are
long enough to invalidate the traditional “analog” loop design
assumptions, leading to an unacceptable solution. Using the
proposed close-to-optimal technique one can design a phase re-
covery loop with the best performance possible under require-
ment of margins for good dynamic response, and under condi-
tions of uncertainty in the phase detector gain. We derive the
optimal loop without the margin constraints, and in case the op-
timal design does not meet the margins over the entire parameter
uncertainties, we have presented a method of finding a subopti-
mal solution. The solution is given for arbitrary phase noise
and additive noise spectrum, margins and uncertainty, and loop
delay. In addition, we give a simple low order loop design pro-
cedure which may be sufficient in many cases. The solution for
OFDM covers both data aided without pilots and data aided with
pilots. In the latter case, we combine the estimation from data
and from pilots for the best performance. We analyzed a practi-
cal test case and showed better performance than that obtained
by the conventional technique, where phase is estimated using
pilots only and frequency is estimated using AFC.

APPENDIX

Let y(kT) be the sampled output at time k7" of the LTI system
H(s) whose input is the white noise u(t) with mean value of
zero and spectral density Ny. The spectral density of y(kT) is

oo

Ny . 2 2mn
py(w) = ?nzz_oolH(an” y Wn = T
Example 1: H(s) = 1_:;T
No = 1—eonT ] — eiwnT
o) = T -
T . wpT waT
No = 2—eJonT _ gionT
- T n;oo —w2T?
B No [2T2" ' —Tz72-T
B T2 (1—-2-1)2
Ny 1—2z71 4272
T (1 =212
= =

—sT

Example 2: H(s) = 1i=¢—

No o= 1—eJwnT ] —eiwnT
bw) = T D W2T 2T
n=—oo
N i 2 — e JonT _ giwnT
T & wAT?

3,1 -1 -2
_ MNT2 (1+4271 +2 )(2—z'1—z)
T° 6(1 —2z71)*

Example 3: H(s) = 5 1=¢

¢y(w)

(1

[2]

3]

(4]
[51
[61

(7

(8]

[9]

[10]

(11
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1+4z7t 4272
6(1 —2-1)2
z24+4+271

6(1 — 2z 1)(1-2)

(z ' +a)z+a)/a

= —-NoT
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= N0T6(1_Z_1)(1_Z>,a=2+\/§
_ ‘Wﬁ‘(”*“) az24v3
R I TC R Y ~
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T o w T Wl wpT wl
T?% 2* + 2623 + 6622 + 26 1
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_ T3 22 4+ 262" 4+ 66 + 262~ 4 272
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