DOI QR코드

DOI QR Code

Longitudinal Thermal Dispersion Enhancement by Oscillating Flow in a Grooved Channel

그루브 채널에서 왕복 유동에 의한 열확산 촉진에 관한 연구

  • Published : 2005.10.01

Abstract

The characteristics of longitudinal dispersion enhancement by the flow oscillation are numerically studied according to various groove geometries in a 2-D channel in the present study. The length of expanded section l$_{1}$/h$_{1}$ is varied from 0 to 8.75. The oscillating flow condition is given at both side ends, i.e., u = Asin ($2{\pi}ft$) The non-dimensional temperatures at both side ends are set to zero. The bottom and top walls are adiabatic. The local heat sources are located at the middle of the groove wall. In order to solve the governing equations, the SIMPIER algorithm is employed. The present results indicate that maximum longitudinal thermal dispersion can be achieved when the area ratio of the expanded section to the contracted section in the grooved channel becomes 1.

Keywords

References

  1. Jaeger, M. J. and Kurzweq, U. H., 1983, 'Determination of the Longitudinal Dispersion Coefficient on Flows Subjected to High-Frequency,' Phys. Fluids, Vol. 26, No.6, pp. 1380-1382 https://doi.org/10.1063/1.864323
  2. Kurzweq, U. H., Howell, G. and Jaeger, M. J., 1984, 'Enhanced Dispersion in Oscillatory Flows,' Phys. Fluids, Vol. 27, No. 5, pp. 1046-1048 https://doi.org/10.1063/1.864752
  3. Kurzweq, U. H. and Zhao, L., 1984, 'Heat Transfer by High-Frequency Oscillation: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities,' Phys. Fluids, Vol. 27, No. 11, pp. 2624-2627 https://doi.org/10.1063/1.864563
  4. Kurzweq, U. H., 1985, 'Enhanced Heat Conduction in Oscillating Viscous Flows Within Parallel-Plate Channels,' J. Fluid Mech., Vol. 156, pp. 291-300 https://doi.org/10.1017/S0022112085002105
  5. Kurzweq, U. H., 1985, 'Enhanced Heat Conduction on Fluids Subjected to Sinusoidal Oscillations,' J. Heat Transfer, Vol. 107, pp. 459-462 https://doi.org/10.1115/1.3247437
  6. Ghaddar, N. K., Korczak, K. Z., Mikic, B. B. and Patera, A. T., 1986, 'Numerical Investigation of Incompressible Flow in Grooved Channels. Part 1. Stability and Self-Sustained Oscillations,' J. Fluid Mech., Vol. 163, pp. 99-127 https://doi.org/10.1017/S0022112086002227
  7. Ghaddar, N. K., Magen, M., Mikic, B. B. and Patera, A. T., 1986, 'Numerical Investigation of Incompressible Flow in Grooved Channels. Part 2. Oscillatory Heat Transfer Enhancement,' J. Fluid Mech., Vol. 168, pp. 541-567 https://doi.org/10.1017/S0022112086000502
  8. Greiner, M., 1991, 'An Experimental Investigation of Resonant Heat Transfer Enhancement in Grooved Channel,' Int. J. Heat Mass Transfer, Vol. 34, pp. 1383-1391 https://doi.org/10.1016/0017-9310(91)90282-J
  9. Kim, S. Y., Kang, B. H. and Hyun, J. M., 1998, 'Forced Convection Heat Transfer from Two Heated Blocks in Pulsating Flow,' Int. J. Heat Mass Transfer, Vol. 41, No.3, pp. 625-634 https://doi.org/10.1016/S0017-9310(97)00138-5
  10. Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York
  11. Joshi, C. H., Kamm, R. D., Drazen, J. M. and Slutsky, A. S., 1983, 'An Experimental Study of Gas Exchange in Laminar Oscillatory Flow,' J. Fluid Mech., Vol. 133, pp. 245-254 https://doi.org/10.1017/S0022112083001895
  12. Kim, S. Y., Kang, B. H. and Hyun, J. M., 1993, 'Heat Transfer in the Thermally Developing Region of a Pulsating Channel Flow,' Int. J. Heat Mass Transfer, Vol. 36, pp. 4257-4266 https://doi.org/10.1016/0017-9310(93)90088-N
  13. Watson, E. J., 1983, 'Diffusion in Oscillatory Pipe Flow,' J. Fluid Mech., Vol. 133, pp. 233-244 https://doi.org/10.1017/S0022112083001883
  14. Xiaofeng, Y. and Masashi, S., 2001, 'Augmented Longitudinal Diffusion in Grooved Tubes for Oscillatory Flow,' Int. J. Heat Mass Transfer, Vol. 44, pp. 633-644 https://doi.org/10.1016/S0017-9310(00)00103-4