참고문헌
- ARNOLD, B. C., BEAVER, R. J., GROENEVELD, R. A., AND MEEKER, W. Q. (1993). 'The nontruncated marginal of a truncated bivariate normal distribution' , Psychometrica, 58, 471-478 https://doi.org/10.1007/BF02294652
- ARNOLD, B. C., CASTILLO, A. AND SARABIA, J. M. (2002). 'Conditionally specified multivariate skew distributions', Sankhya, A64, 206-226
- AZZALINI, A. (1985). 'A class of distributions which includes the normal ones', Scandinavian Journal of Statistics, 12, 171-178
- AZZALINI, A. AND CAPITANIO, A. (2003). 'Distributions generated by perturbation of symmetry with emphasis on a multivariate distribution', Journal of the Royal Statistical Society, B35, 367-389 https://doi.org/10.1111/1467-9868.00391
- AZZALINI, A. AND DALLA VALLE, A. (1996). 'The multivariate skew-normal distribution', Biometrika, 83, 715-726 https://doi.org/10.1093/biomet/83.4.715
- BERGER, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd ed., New York: Springer-Verlag
- BRANCO, M. D. AND DEY, D. K. (2001). 'A general class. of multivariate skew-elliptical distributions', Journal of Multivariate Analysis, 79, 99-113 https://doi.org/10.1006/jmva.2000.1960
- CHEN, M. H., DEY, D. K., AND SHAO, Q. M. (1999). 'A new skewed link model for dichotomous quantal response data', Journal of the American Statistical Association, 94, 1172-1185 https://doi.org/10.2307/2669933
- CHIB, S. AND GREENBERG, E. (1995). 'Understanding the Metropolis-Hastings Algorithm', The American Statistician, 49, 327-335 https://doi.org/10.2307/2684568
- COHEN, A. C. (1991). Truncated and Censored Samples: Theory and Applications, New York: Marcel Dekker
- COWLES, M. AND CARLIN, B. (1996). 'Markov chain Monte Carlo diagnostics: A comparative review', Journal of the American Statistical Association, 91, 883-904 https://doi.org/10.2307/2291683
- DEVROYE, L. (1986). Non-Uniform Random Variate Generation, New York: Springer Verlag
- GELFAND, A. E. AND SMITH, A. F. M. (1990). 'Sampling-based approaches to calculating marginal densities', Journal of the American Statistical Association, 85, 398-409 https://doi.org/10.2307/2289776
- GELFAND, A. E., SMITH, A. F. M., AND LEE, T. M. (1992). 'Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling', Journal of the American Statistical Association, 87, 523-532 https://doi.org/10.2307/2290286
- GELMAN, A., CARLIN, J. B., STERN, H. S., AND RUBIN, D. B. (2000). Bayesian Data Analysis, New York: Chapman and Hall
- GELMAN, A. ROBERT, G. 0., AND GILKS, W. R. (1996). 'Efficient Metropolis jumping rules', in Bayesian Statistics 5, eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford UK: Oxford University Press, 599-607
- GEMAN, S. AND GEMAN, D. (1984). 'Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images', IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 721-741 https://doi.org/10.1109/TPAMI.1984.4767596
- GUSTAFSON, P. (1998). 'A guided walk Metropolis algorithm', Statistics and Computing, 8, 357-364 https://doi.org/10.1023/A:1008880707168
- HENZE, N. (1986). 'A probabilistic representation of the skew-normal distribution', Scandinavian Journal of Statistics, 13, 271-275
- JOHNSON, N. L., KOTZ, S., AND BALAKRISHNAN, N. (1995). Continuous Univariate Distributions, Vol. 2, New York: John Wiley
- KIM, H. J. (2002). 'Binary regression with a class of skewed t link models', Communications in Statistics- Theory and Methods, 31, 1863-1886 https://doi.org/10.1081/STA-120014917
- LEE. P. M. (1997). Bayesian Statistics, 2nd ed., New York: John Wiley
- MA, T. AND GENTON, M. G. (2004). 'A flexible class of skew-symmetric distributions. To appear in Scandinavian Journal of Statistics. http:www4.stat.ncsu.edu/mggenton/publicatiQns.html
- ROBERT, G. O., GELMAN, A., AND GILKS, W. R. (1997). 'Weak convergence and optimal scaling of random walk Metropolis algorithm, Annals of Applied Probability, 7, 110-120 https://doi.org/10.1214/aoap/1034625254