DOI QR코드

DOI QR Code

Texture and Plastic Strain Ratio of the Severe Shear Deformed with ECAP and Heat-treated AA 1050 Aluminum Alloy Sheet

ECAP로 심한 전단 소성변형한 후 열처리한 AA 1050 알루미늄 합금 판재의 집합조직과 소성변형비

  • ;
  • 이민구 (금오공과대학교 신소재시스템공학부) ;
  • 박병현 (금오공과대학교 신소재시스템공학부) ;
  • 김인수 (금오공과대학교 신소재시스템공학부)
  • Published : 2005.09.01

Abstract

A study on the microstructure, the texture and the formability of the samples after ECAPed and subsequent heat-treated AA 1050 aluminum alloy sheet have been carried out. The specimens after the ECAP showed a very fine grain size, a decrease of <100> // ND, and an increase of <111> // ND textures. The $\{111\}<112>,\;\{123\}<634>,\;\{110\}<001>,\;\{112\}<111>,\;\{110\}<111>,\;and\;\{013\}<231>$ texture components were increased in the specimens after the ECAP and subsequent heat-treatment at $400^{\circ}C$ for 1 hour. One of the most important properties in sheet metals is formability. The r-value or plastic strain ratio has was as a parameter that expressed the formability of sheet metals. The change of the plastic strain ratios after the ECAP and subsequent heat-treatment conditions were investigated and it was found that they were two times higher than those of the initial Al sheets. This could be attributed to the formation above texture components through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheet.

Keywords

References

  1. V. M. Segal, Mater. Sci. Eng. Vol. A 197 (1995), p. 157
  2. Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, Metall. Mater. Trans. Vol. 29A (1998), p. 2503
  3. K. Nakshima, Z. Horita, M. Nemoto, T. G. Langdon, Mater. Sci. Eng. Vol. A281 (2000), p. 8
  4. J.-Y. Chang, J. S. Yoon, J. Kor. Inst. Met. & Mater. Vol. 40(12) (2002), p. 1309
  5. M. Furukawa, Z. Horita, T. G. Langdon, Met. Mater. Int. Vol. 9 (2003), p. 141 https://doi.org/10.1007/BF03027270
  6. I. V. Alexandrov, A. A. Dubravina, A. R. Kilmametov, V. U. Kazykhanov, R. Z.Valiev, Met. Mater. Int. Vol. 9, (2003), p. 151 https://doi.org/10.1007/BF03027271
  7. J. S. Hayes, R. Keyte, P. B. Prangnell, Mater. Sci. Technol. Vol. 16 (2000), p. 1259 https://doi.org/10.1179/026708300101507479
  8. Y. Saito, H. Utsunomiya, H. Suzuki, T. Sakai, Scripta Mater. Vol. 42 (2000), p. 1139 https://doi.org/10.1016/S1359-6462(00)00349-3
  9. J.-H. Han, H.-K. Seok, Y.-H. Chung, M.-C. Shin, Mater. Sci. Eng. Vol. A323 (2002), p. 342
  10. J.-H. Han, H.-K. Seok, J.-Y. Suh, Acta Mater. Vol. 50 (2002), p. 4005 https://doi.org/10.1016/S1359-6454(02)00200-8
  11. H.-D. Kim, M.-Y Huh, N.-J. Park, Y. H. Chung, Met. Mater. Int. Vol. 9 (2003), p. 413 https://doi.org/10.1007/BF03027197
  12. Q. Jining, J.-H. Han, Z. G. Guoding, J.-C. Lee, Scripta Mater. (2004), p. 185
  13. S. Akramov, M. G. Lee, I. Kim, D. Y. Sung, B. H. Park, Mater. Sci. Forum Vol. 475-479 (2005), p. 417
  14. S. Akramov, M. G. Lee, I. Kim, D. Y. Sung, B. H. Park, I. Kim, Mater. Sci. Forum Vol. 495-497 (2005), p.803
  15. H. J. Bunge: Texture Analysis in Materials Science, translated by P.R. Morris (Butterworths, London 1982, p. 337)
  16. P. H. Lequeu, J. J. Jonas, Metall. Trans. Vol. 19A (1988), p. 105
  17. H.-T. Jeong, Kang Nung University, Private communication