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Project Duration Estimation and Risk Analysis Using Intra-and
Inter-Project Learning for Partially Repetitive Projects

Sungbin Cho*

m Abstract m

This study proposes a framework enhancing the accuracy of estimation for project duration by combining linear
Bayesian updating scheme with the learning curve effect. Activities in a particular project might share resources in
various forms and might be affected by risk factors such as weather. Statistical dependence stemming from such
resource or risk sharing might help us learn about the duration of upcoming activities in the Bayesian model. We
illustrate, using a Monte Carlo simulation, that for partially repetitive projects a higher degree of statistical dependence
among activity duration results in more variation in estimating the project duration in total, although more accurate
forecasting is achievable for the duration of an individuai activity.

Keyword : Project Duration Estimation, Linear Bayesian Learning, Learning Curve Effect,
Risk Analysis, Influence Diagram

1. Introduction by project management researchers seeking to
provide better problem-solving techniques. The

A considerable amount of effort has been devoted question of how to improve the estimation of
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project duration has been one of the most im-

" portant issues in project management. A large
number of extensions have attempted to improve
the accuracy of activity duration estimation and
resource planning by using the learning curve
effect (1, 2,20, 22).

Consider a set of similar subprojects that share
a group of identical activities. For example, in the
Beaver Creek Resort Project in Colorado, more
than 1,000 units of condominiums and town-
houses are to be built. Each buildup can be re-
garded as a subproject and thus the total project
consists of many similar or identical subprojects
(3]. For partially or completely repetitive projects
such as apartment building or airplane con-
struction, incorporating the learning curve effect
would be useful.

However, learning has been recognized in a
narrow sense because it could be applied strictly
to repetitive projects only. In other words, learn-
ing is confined to between projects only. Note
that most projects are unique {18]. Thereby, we
can hardly take advantage of the learning curve
effect for projects in general. For instance, when
two adjacent activities in a project share the
same resources, we can model neither statistical
dependence nor inter-learning with the learning
curve. Within-project learning is not possible in
the traditional learning curve model. Chatzoglou
and Macaulay [4] emphasized the needs of a new
approach that can re-estimate the project’s vari-
ables upon the release of new information, by
pointing out the existing models’ inadequacy for
a software development project. Learning should
be feasible for both an individual project and
multiple projects for a better modeling.

Research and development (R&D) projects

such as software development, information sys-

tem networking, or space shuttle construction, can
be characterized by a high level of uncertainties.
Since R&D projects are inherently novel, it is
hard to estimate cost and time requirements for
each activity and, as a result, the expected dura-
tion of a project is only a rough estimate [7].
Scientific and technological feasibility issues
may be discovered in the middle of a project.
New technologies with competitive advantages
may be introduced into the market where typical
advantages include cheaper cost, higher per-
formance, and wider compatibility with other
systems. Customer requirements and specifica-
tions might also change. Project managers may
then be forced to modify their original courses
of action.

A common weakness of most existing ap-
proaches is the assumption that activity dura-
tions in a project are statistically independent.
Assume that a preceding-succeeding pair of ac-
tivities is carried out by a newly formed work

force. It is not easy to estimate the team’s per=

formance accurately in advance. Suppose the
preceding activity took longer than expected.
Then, the delay might stem from insufficient la-
bor skill of the team, which was overestimated
upon planning. This might reveal the information
such that the succeeding activity is highly likely
to take longer than firstly expected. Similar ex-
amples can be found in activities that share other
types of resources, such as common raw materi-
als, oil or electricity, and common equip-
ment/facilities. Another major source of depend-
ence among activity durations in a project might
be common risk factors. For example, weather
or financial risk might influence some of or all
activity durations. Several attempts have been

made to model dependence structure among ac-



tivity durations in a project [6,7, 14, 23]. More
recently, Virto et al {24] and Diaz et al. [8] sug-
gested a sequential project estimation using
Markov Chain Monte Carlo simulation technique.
A Bayesian approach was adopted by Cho and
Covaliu [5] for sequential resource allocation
problem in projects.

This study proposes a hybrid model to esti—
mate activity duration as well as project duration
using inter-project learning and intra-project
learning in the Bayesian scheme. We illustrate,
through modeling processes and risk analysis,
that our model is more practical and realistic than

other existing approaches currently in use.

2. Review of Learning Curve
Effect : Inter-Project
Learning

It is essential to apply the learning curve effect
for a set of projects that are somewhat repetitive.
As a set of similar projects are serially accom-—
plished, we might recognize a pattern about the
duration of identical activities between projects.
Hence, we define it as inter-project learning. We
can apply the learning curve effect into the con—
text of project management in the following way.
As an activity is repeatedly carried out, activity
duration, on average, decreases according to a

certain pattern.

=T’ 4

T cumulative average duration of Activity 7 for
Xth repetition

TV : duration of Activity 7 for the first repetition

X ! Xth repetition

l ! learning curve exponent [ = (% of
learning) / In 2]
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At a learning rate of 90%, e.g., the cumulative
average time of Activity i would decrease as
Activity 7 1is repeatedly pursued. Note that / is
- 0.1520 given a 90% learning rate. For example,
suppose Activity ¢ takes 30 days for its first
repetition. For the second repetition, the expected
duration of Activity ¢ would be 27 days. For the
fourth repetition, it would be 24.3 days. Similarly,
it decreases in an exponential way (see [Figure 1]).
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[Figure 1] Activity duration as a function of pro-
ject repetition

3. Bayesian Model for Intra-
Project Learning

As discussed in Section 1, we might learn
about dependence structure among activities, ac—
tivity duration in particular, as long as activities
share resources or lie under the influence of
common risk factors. Compared to inter-project
learning in the previous section, we define in-
tra-project learning as learning that can possibly
be occurred between activities within a particular
project. We propose a framework for intra—proj-

ect learning using a Bayesian scheme.

3.1 Graphical Model

For the sake of simplicity, consider a simple
two-activity in-serial project. Conventionally, in



PERT-type network representation we have

been using precedence diagrams to illustrate pre-
cedence relationships between activities. [Figure
2(a)] depicts that Activity I must be completed
" before the onset of Activity J. This study newly
employs influence diagram as a graphical model-
ing tool in order to model a probabilistic depend-
ence between activity durations (see [21] for a
review of influence diagram). We model the de-
pendence structure using influence diagram, in

[Figure 2(b)], such that the duration of Activity
J ( T;) might depend on that of Activity I ( T5).

3.2 Linear Bayesian Model

In the full Bayesian scheme, we update the
probability distribution using entire probability
mass or density function, which often results in
heavy computational work and difficulty in ob-
taining analytic solutions. A few studies in-
troduced linear Bayesian method in a way to re-
lieve computational complexity inevitably com-
ing along with the full Bayesian approach [9, 10].
We formulate Bayesian updating scheme using
the Hartigan’s linear Bayes’ theorem [12] where
the first two moments of a probability dis-
tribution are directly obtained. For random vari-
ables T: and T;, we set the linear equation for
the approximate expectation of 7, given T
such that E[T;1T;1=cT;+d where ¢ and d
are chosen to minimize the variance of the

equation. Then the conditional variance of 7T

O—O

(a) Sequence of activities

given T:, VIT;|T;] can be obtained from the
combination of marginal variance and present
data variance.

1 1 &
- VIT; | T)) vIiT;1  VIT;IT)] 2)

Next, we can also obtain the estimation of the
conditional mean of T, given 7 by averaging
its marginal mean and present data by the
weight of variances in Eq. (2) such that :

. . L/VIT]]
ELT; | Ti]=E[T;]"m
+( Ti—d CZ/V[T,' lT;]
c VIT; 1T 3)

3.3 Example of Bayesian Updating

Let us specify the distribution of activity dura—
tion such that it follows Normal distribution with
the following means and variances (unit : days)
and additionally assume the correlation co-

efficient of T: and 7; as follows :
T,~ N[20,5%1, T, ~N[30,61, 0,=0.5.  (4)

By using Eqgs. (2) and (3), we can update the dis-

tribution of 7; given 7. as follows :
T,|T; ~ N[18+0.6T;,5.20°.

For example, if Activity I takes 20 days as ex-
pected, the duration of Activity J remains un-
changed as before, 30 days. If Activity I takes

(b) Dependence of activity durations

[Figure 2] Precedence diagram and Influence diagram for the two-activity in-serial project
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more time than expected, e.g., 25 days, Activity
J is expected to take 33 days, which is greater
than the marginal expected duration 30 days. If
Activity I takes less time than expected, e.g., 15
days, Activity J is expected to take 27 days, less
than the marginal expected duration.

Let us further examine the effect of correlation
coefficient on the estimation of the duration of
remaining activities given that of completed
activities. Consider *+ 0.3 bounds from the corre-
lation coefficient of 0.5, For a low correlation co—
efficient (0.2) and a high correlation coefficient
(0.8), the conditional distribution of the duration
of Activity ] given the duration of Activity I
would be :

for 0;,=0.2,T; | T;~N[25.2+0.24T;, 5.88].
for 0,=0.8,T;1T,~N[10.8+0.96T;, 3.60%].
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[Figure 3] The conditional expected duration of
Activity J given the duration of Activity
| as a function of correlation coefficients

[Figure 3] depicts how the conditional ex-
pected duration of Activity J given the duration
of Activity I changes according to correlation
coefficients. As the correlation coefficient gets
higher, we can identify a stronger impact on the
expected duration of Activity J by the observed
duration of Activity I. For example, if Activity
I takes less time than expected, Aétivity J tends

to take far less time than marginally expected
as the correlation increases. On the other case
when Activity I takes more time than expected,
Activity ] tends to take even more time as the

correlation increases.

4. Hybrid Model with Intra-
and Inter- Project Learning

Now we combine the linear Bayesian model
with the learning curve. Upon observing the du-
ration of Activity I for the first project, we can
update the expected duration of Activity I for the
Xth project as follows :

E[T{P1=T"X' (5)

Next, we can obtain, for Activity ] of the Xth
project, the conditional variance of 7T; given 7
using Eq. (2) and then estimate the conditional
expectation of T; given 7 using the following

Equation :

1/vIT,]

BT T =B e Ty
b H

r0—g HVITIT)]
c VVIT;1T,1  (6)

+(

4.1 Simulation Example

To illustrate the modeling processes and evaluate
the effect of learning curve effect and Bayesian
updating, consider a project that consists of ten
subprojects each of which has two in—serial ac-
tivities and subprojects will be carried out in a

serial manner. Note that if both activities are

common for all subprojects, they are not projects
any longer, but a routine work. So it is reason-
able to assume only a part of subproject is iden-
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tical. With the above reasoning, only preceding
Activity A is common for all ten subprojects.
The learning rate for Activity A is assumed to
be 90%. Activities for each subproject and mar-
ginal distribution of activity duration are de-
scribed in <Table 1>. For a clear evaluation of
learning curve effect and Bayesian updating, the
marginal distribution of duration of succeeding
activities of subprojects are set to equal to each
other, and so do the correlation coefficients as 0.5.

“We generated the posterior samples of project
duration using a Monte Carlo simulation under
the following four estimation models. After
50,000 iterations we compared the differences in
the expected duration and its variation. The four

~ estimation models are as follows.

¢ Naive model

Neither learning curve effect nor Bayesian up-
dating are reflected in the Naive model. Thus the
duration of all activities is generated from the
marginal probability distribution described in
<Table 1>.

¢ Learning curve model

This model allows learning for identical activ-
ities of subprojects. The marginal distribution of
Activity A for all subprojects is generated using
Eq. (6) for the mean and 5 for the standard
deviation. The duration of succeeding activity is
generated using the marginal distribution in
<Table 1>,

¢ Bayesian model

In the Bayesian model, the conditional dis-
tribution of succeeding activity is generated us-
ing Eq. (6), in that the mean duration of suc-
ceeding activity for each subproject is con-
ditioned on the observed duration of preceding
activity duration and the standard deviation is
fixed to 5.20. For the duration of preceding ac—
tivity, the marginal distribution is used as in
<Table 1>.

e Hybrid model
This model allows learning curve effect as
well as Bayesian updating. For preceding activ-

(Table 1> Data assumed for the ten subprojects

Subproject Prec'eqmg Succsee'ding Dur'ation o.f. Dur'fltion of . Corre}gtion
activity activity preceding activity succeeding activity coefficient

1 A T,~N(20,5%) Ty ~N(30,62) 045 =0.5
2 A C T, ~N(20,5%) T ~N(30,6%) pac=0.5
3 A D T, ~N(20,5%) Tp~N(30,62) Pap=0.5
4 A E T,~N(20,5%) T ~N(30,62) oap=0.5
5 A F T,~N(20,5%) T ~N(30,6%) oar=0.5
6 A G T, ~N(20,5%) Ts~N(30,62) fac=0.5
7 A H T,~N(20,5%) Ty~N(30,6%) oan=0.5
8 A I T,~N(20,5%) T, ~N(30,62) a1 =0.5
9 A J T,~N(20,5%) T, ~N(30,6%) P4y =05
10 A K T,~N(20,5%) T« ~N(30,6%) fax=0.5




{Table 2> Simulated statistics of the four estimation models
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) Naive model Leaming curve Bayesian model Hybrid model
Duration model
Mean |std. dev.] mean |std. dev.| mean |std. dev.] mean |std. dev.
Total project T 500.03 2477 459.78 2471 500.54 22.74 459.59 22.89
T, 49.98 7.83 50.06 7.83 51.06 7.22 52.18 7.20
T, 50.04 7.82 48.03 7.79 4797 7.19 48.00 7.20
T, 49.99 7.82 46.86 7.81 50.29 7.20 46.92 7.19
T, 50.00 7.78 46.19 7.80 50.86 7.18 45.69 7.21
. T 50.00 7.78 4563 7.81 4917 7.18 43.43 7.22
Subproject
Ts 50.01 7.80 45.19 7.80 49.23 7.20 45.09 7.20
T, 49.96 7.81 44.83 7.85 50.40 7.24 45.88 7.19
Ty 50.01 7.81 457 7.82 50.75 7.21 4322 7.17
Ty 5000 | 785 44.30 7.81 49.37 7.18 45.16 7.23
Ty 50.04 7.84 4413 7.82 51.35 7.21 4403 || 717

ities, we generate the duration using Eq. (5) for
the mean and 5 for the standard deviation. Con—
ditioned on the generated duration of preceding
activity, the duration of succeeding activity is
generated using Eq. (6) for the mean and 5.20
for the standard deviation.

The simulated results are displayed in <Table
2>, There are a few findings from the ex-
periment. First, the two models without learning
curve effect, ie, the Naive model and the
Bayesian model, have, on average, around 500
project duration days. On the other hand, the
average duration is reduced to about 460 days
for the other two models, the Learning curve
model and the Hybrid model, that allow learning
rate of 90%. It is obvious for the two models with
learning curve effect to have shorter project du-
ration as subprojects continue to proceed.

Secondly, it is worth to pay attention to the
risks associated with the estimation of project

duration. In the Bayesian scheme, we update not

only the expected duration of succeeding activity
but also its variation. Its conditional variance
gets smaller than the marginal variance. It is ap-
parently shown in Eq. (2). Since the conditional
precision (precision is 1 over variance) is the sum
of the marginal precision and the present data
precision, the conditional precision is always
greater than the marginal precision. It is im-
portant to note that the Bayesian updating gives
more precise forecasting about individual activ-
ity duration. Accordingly, the Bayesian model
and the Hybrid model yield a smaller standard
deviation in estimating project duration, as in in—
dividual subprojects and projects in total, than
the other two models without Bayesian component.
Conclusively, it is helpful to adopt Bayesian
modeling in reducing the amount of uncertainty

associated with estimating project duration.

5. Example Project

Further investigation on the effect of learning



by the Hybrid model is done using the air pollu-
tion control equipment project in Heizer and
Render [13]. Activity description and immediate
precedence relationships were adopted and for
the sake of simulation we assumed the first two
moments of the distribution of activity duration
as in <Table 3> (duration unit : days). Among
the eight activities in the project, Activities A,
B, C, and D are assumed to be repeatedly carried
out project after project, and other four activities
are treated as changing into different entities
that, although, have the same marginal dis-
tribution.

We assumed that resource sharing among ac-
tivities is planned betwéen Activities A and F,
between Activities B and E, between Activities
C and H, and between Activities D and G. The
effect of resource sharing plan is reflected in the
influence diagram, in that statistical dependence
exists between activity duration as illustrated in
[Figure 4]. It is well known that the project dura-
tion depends on the duration of the critical path
of the networks, which can be easily identified
in precedence diagrams. In our case, the project
duration is computed by the longest duration
path such that :

T= maX{TA+ Tc+ TF+ TH, TA+ Tc+ TE

+ T+ Ty, Tog+Tp+ T+ Ty)

We assumed that the project is repeatedly car-
ried out five times with the four identical activ-
ities as mentioned above. After 50,000 Monte
Carlo simulations, sample statistics about the
project duration are obtained.

O ®
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®
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(Figure 4] Influence diagram for the air poliution
control equipment project

Given controlling correlation coefficients, 0.6 in
our experiment, for all statistical dependence
relations described in the influence diagram,

themean project duration for each of five com-

{Table 3) Activity description about the air pollution control eguipment project

Activity Description pi:érgcessi:cﬁs i a?
A Build internal components 4 &
B Modify roof and floor 30 5
C Construct collection stack A 15 4
D Pour concrete and install frame B 40 6*
E Build high-temperature burner C 20 42
F Install control system C % 4
G Install air pollution device D E 30 8
H Inspection and testing F, G 20 3?




pletions of the projects is computed and illus-
trated in [Figure 5). It is natural for the effect
of learning curve not to be happened for the first
completion of project. For X = 1, the mean proj—
ect duration approximately equals to each other
regardless of learning rate. For the subsequent
completion of project, the mean project duration
continuously goes down owing to the accumu-—
lation of learning effect. This tendency becomes
stronger as the learning rate decreases from 95%
to 80%.

Mean T
140.00
130.00
120.00 M
110.00 \\f\:\‘\;j
100.00 %]
—a [85% LC]
90.00 —a— [90% LC] |
—¢ [95% LC]
80.00 . . 4
1 2 3 4 5 X

[Figure 51 Mean project duration under various
learning rates

Whereas the learning curve effect of the
Hybrid model can be identified in terms of the
expected project duration, the effect of the
Bayesian updating can effectively be shown on
the perspective of uncertainty involved with es-
timating work. Given the learning rate of 90%,
we compute the standard deviation of simulated
project duration by substituting several correla-
tion coefficients.

A sample correlation coefficient can be easily
calculated for the case where historical data were
accumulated. However, such statistical data ac-
curmulation is practically impossible and mean-
ingless in project management. This is the rea-
son why time estimation in projects has been en—
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tirely depended on the subjective judgment.
Assessing a correlation coefficient directly is
quite difficult even for professionals in the area
of stochastic modeling. Like the derivation of
utility or risk attitude, the correlation coefficient
can be indirectly assessed. There were some
studies dealing with the problem of assessing
subjective expectations and probabilities [15, 16].

A good reference of deriving a correlation co-
efficient would be a study by Gokhale and Press
[11]. By assuming a bivariate normal density for
a pair of activities, we can obtain the con-
cordance probability. The concordance proba-
bility for two random variables is defined by the
degree of tendency of shifting in the same
direction. For example, for two activities A and
B, the project manager and field experts should
assess the fraction of the cases that the duration
of activity B will be longer than its expected du-
ration, given that the duration of activity A is
longer than its expected duration. As a next step,
we can inversely estimate the correlation co-
efficient from the given concordance probability
using the following equation, in that a one-to—
one relationship exists between the correlation

coefficient and the concordance probability :

1.1,
Concordance probability =79 17 arcsine

The four correlation coefficients that can be
identified in the influence diagram are to be
changed simultaneously from 0.2 to 0.8 by an in-
crement of 0.2 for examining the impact of the
degree of statistical dependence on estimating
project duration. As the degree of statistical de-
pendence increases, we can identify an increased
level of risks associated with estimation (see
[Figure 6]). This phenomenon might stem from



the following reasoning. As the correlation co—

efficient increases, the conditional distribution of
the duration of upcoming activities becomes less
variable. In other words, we end up with a more
precise probability distribution. The longer the
preceding activity took, the greater the succeed-
ing activity tends to take longer. The shorter the
former, the greater the latter tends to take
shorter.

Std. dev.

14.000

13.500

13,000 — ==X "X
12.500 __’:_/_

12,000 ————— — .
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ol |
10.500 -~ [rho=0.8] —
10.000 ; " Z z X

[Figure 6] Standard deviation of project duration
under various correlation coefficients

For better understanding, let us explain the
impact of correlation coefficient on the individual
activity duration and the total project duration,
using the following example. As shown in [Figure
4], Activities D and G are correlated with each
other. Consider the four cases where the correla-
tion coefficient is either 0.2 or 0.5 and the dura-
tion of Activity D is observed as either 30 days
or 50 days. The conditional duration of Activity
G can be obtained using Egs. (2) and (3), which

is as follows :

Given fpc=0.2:
If T, =30,then
(To | Tp=30)~N(27.30,7.84%) (7N
If T, =50,then
(Tg | Tp=50)~N(32.67,7.84%) (8)

Given ©pc=0.5:
If T, =30,then

(T | Tp=230)~N(23.33,6.93%) (9)
If T, =50,then
(T¢ | Tp="50)~N(36.67,6.93%) (10)

First, let us identify the impact on the in-
dividual activity duration. By comparing (7) to
(9) or alternatively (8) to (10), we can see the
impact of correlation coefficient on the variation
of the duration of upcoming activity. As correla-
tion coefficient increases, the conditional var-
iance for the upcoming activity decreases from
7847 to 693% This implies that for increasing
correlation, forecasting on the level of an in-
dividual activity becomes more precise.

Second, let us see the impact on thé total proj-
ect duration by comparing the total duration of
Activities D and G. If Activity D took 30 days,
the total expected duration of Activities D and
G would be, from (7) and (9) :

Given ope =0.2: Ty +E[ Tt Tp=30]
=57.30 days.

Given pp; =0.5: T +E[T:| Tp =301
=53.33 days.

If Activity D took 50 days, the total expected
duration of Activities D and G would be, from
(8) and (10) :

Given ppg =0.2: T +E[ T | Tp=50]
' =82.67 days.

Given ppe =0.5: Tp+E[ T | T, =50]
=86.67 days.

Depending on whether Activity D took 30 days
or 50 days, the range of the total duration would
be 2537 days (82.67-57.30) for the case of
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opc =0.2, whereas the range would be 33.34
days (86.67-53.33) for the case of epc=0.5,
This implies that it is more likely for the suc-
ceeding activity to end up with a different dura-
tion compared to its marginal expected duration
for increasing correlation. Therefore, the varia-
tion of the total project duration increases as the
correlation coefficient increases.

In summary, higher statistical dependence
among activity duration results in more variation
n estiniating the project duration in total, al-
though we can attain a more precise forecasting
for the duration of an individual activity.

6. Conclusion

Today projects are often planned and managed
in an inefficient way, resulting in higher costs.
In the future, undoubtedly even more uncertainty
will be involved in the management of projects
because of many reasons such as rapidly-chang-
ing technology and the increased complexity of
the projects. Clearly, the question of how to deal
with uncertainty is increasing in significance. It
is essential to develop a more realistic and coher-
ent methodology than those currently available
for scheduling and controlling projects, so we can
apply it to projects in the real world.

This study contributes to problem solving
with respect to estimating project duration in the
area of project management. There have been
two avenues with respect to how to deal with
project duration. One cohort of studies has main—
ly used the learning curve effect. In this case,
there exists a theoretical flaw, a deterministic
approach to activity duration, which is mani~
festly unrealistic. More seriously, this approach
is applicable only to a set of completely repetitive
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projects. The other cohort has used a stochastic
approach. They used MCMC simulation techni-
ques or full Bayesian approaches, which in-
evitably encompass computational complexity.
These studies were purely academic since it re—
quires highly professional knowledge and skills
in terms of stochastic modeling.

On the other hand, the Hybrid model proposed
in this study firstly combines two kinds of learn~
ing, inter-project learning and intra-project
learning, in the area of project management, and
overcomes the weaknesses of the above two
approaches. In particular, intra-project learning
is modeled on the basis of a linear Bayesian
scheme. Due to the substantial reduction in com—
putational load, the linear Bayesian updating
model can be used to field managers with a mini—
mal level of understanding of the formula. For
those pairs of activities that share resources or
risks, by combining old information with the
newly available information, we can update the
duration of upcoming activities. The old in-
formation implies the marginal activity duration
prior to the onset of project initiation, whereas
the newly available information means the ob-
served duration of completed activities. The de-
gree of association between a pair of activities
is adequately captured by a correlation co-
effictent, which might be derived from a con-
cordance probability. These updating processes
continue repeatedly from the onset of a project
throughout the entire project period. This study
explicitly models these processes, which is really
happening in the real world projects. In con-
clusion, this study contributes to the field of
project management by introducing an estima-
tion model in a more practical and realistic way.

It might be worthwhile to announce the limi-



tation of this study. We separately treat the
learning curve effect from the Bayesian learning.
The former is applied to recurrent identical ac-
tivities between projects. The latter is applicable
for non-recurring activities that share resources
or risks with preceding activities within a partic~
ular project. Future study might seek a way to
apply both learning on the same activities that

are recurrent and resource-sharing with other

recurrent activities. Another possible extension '

of study would be to develop a framework for
assessing the degree of dependence, which, we
asserted in our study, usually exists among ac-
tivities through resource sharing or being influ-
enced by common environmental factors. Research
on such topics may contribute to more efficient
management of projects and conservation of re-
sources than has been possible with techniques

currently in use.
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